The mean kinetic energy per molecule is , where is the Boltzmann constant and T is the absolute temperature.
So at 1000°C, the T = 1273.15 K, kB=1.38 × 10-23, therefore the mean kinetic energy is 2.635 × 10⁻²⁰J.
<h3><u>
What is Kinetic energy ?</u></h3>
The energy an item has as a result of motion is known as kinetic energy.
A force must be applied to an item in order to accelerate it. We must put forth effort in order to apply a force. After the job is finished, energy is transferred to the item, which then moves at a new, constant speed. Kinetic energy is the type of energy that is transmitted and is dependent on the mass and speed attained.
Kinetic energy may be converted into other types of energy and transported between things. A flying squirrel may run into a chipmunk that is standing still, for instance. Some of the squirrel's original kinetic energy may have been transferred to the chipmunk or changed into another kind of energy after the impact.
To view more about kinetic energy, refer to;
brainly.com/question/2972267
#SPJ4
Answer:
Transition metals, alkali metals, alkaline earth metals Transition metals - Middle of the periodic chart, only average reactivity. alkali metals - As mentioned above, very reactive. Bad choice, going from lower reactivity to higher reactivity.
Hope this answer is right!
D, Neon and argon are both noble gases and contain almost the same elements.
2O2 IS THE OXIDIZING AGENT BECAUSE IT GIVES ALL OTHER ELEMENT OXYGEN
First, we convert the depth of the water into meters. This is:
60 feet = 18.3 meters
Now, we compute the additional pressure exerted due to the water, which is given by:
Pressure = density * gravitational field strength * height
P = 1000 * 9.81 * 18.3
P = 179.5 kPa
The atmosphere pressure is 101.325 kPa
The pressure of the gas bubbles 60 feet under water will be:
179.5 + 101.325 = 280.825 kPa
The pressure at the surface of the water will be equal to the atmospheric pressure, 101.325 kPa.
Because of this decrease in external pressure as gas bubbles rise, they are seen to expand.