Answer:
46.3g H2O
Explanation:
start by balancing it: CaC2(s) + 2H2O(g) -> Ca(OH)2(s) + C2H2(g)
then use factor label method to solve
82.4g CaC2 x (1 mol CaC2/64.10g CaC2) x (2 mol H2O/1 mol CaC2) x (18.016g H2O/1 mol H20) = 46.3g H2O
Answer:
Magnesium nucleus will attract the electrons more toward it and therefore, shrinking the size of the atom. Magnesium atom is smaller than Calcium atom because Calcium has more electron ( 20e− ) which will occupy more energy levels ( n=4 for Calcium versus n=3 for Magnesium)
These are called resistors.
Answer:
The metals in this group are lithium, sodium, potassium, rubidium, cesium, and francium. The gas hydrogen is also put in this group because it shares similar reactivity with the alkali metals.
I don't know if this is what you wanted or not sorry if it isn't
Answer: Colligative properties are those properties of solutions that are dependent on the concentration of the solutes in the solution.
Colligative properties has to do with solutions, that is, solutes that are dissolved in solvents. Examples of colligative properties are: freezing point depression, vapour pressure lowering, boiling point elevation and osmotic pressure. Colligative properties do not depend on the identity of the solutes, this implies that the effect of colligative properties are uniform across all solutions. For example, the freezing point depression of any solution will depend on the concentration of solutes that are dissolve in solution.