Answer:
The magnetic field through the wire must be changing
Explanation:
According to Faraday's law, the induced emf, ε in a metallic conductor is directly proportional to the rate of change of magnetic flux,Φ through it. This is stated mathematically as ε = dΦ/dt.
Now for the wire, the magnetic flux through it is given by Φ = ABcosθ where A = cross-sectional area of wire, B = magnetic field and θ = angle between A and B.
So, dΦ/dt = dABcosθ/dt
Since A and B are constant,
dΦ/dt = ABdcosθ/dt = -(dθ/dt)ABsinθ
Since dθ/dt implies a change in the angle between A and B, since A is constant, it implies that B must be rotating.
So, <u>for an electric current (or voltage) to be produced in the wire, the magnetic field must be rotating or changing</u>.
Explanation:
Acids HCl HNO3 H2SO4
bases All oxides or hydroxides of metals
Acids are danger so stay away
The average rate at which the cable does work is 294,000 J/s.
The given parameters:
- <em>mass, m = 3000 kg</em>
- <em>height, h = 200 m</em>
- <em>time of motion, t = 20 s</em>
The average rate at which the cable does work is calculated as follows;
Thus, the average rate at which the cable does work is 294,000 J/s.
Learn more about energy and power here: brainly.com/question/13387946