c5h10
c5h12 ds dsvvdsldnvfsndvjsbdjfs df
Ans: Final volume = 25.0 ml
<u>Given:</u>
Initial volume V1 = 50.0 ml
Initial pressure P1 = 20.0 atm
Final pressure P2 = 40.0 atm
<u>To determine:</u>
The final volume V2
<u>Explanation:</u>
Ideal gas equation: PV = nRT
under constant temperature, T and number of moles n we have:
PV = constant
or, P1V1 = P2V2
V2 = P1V1/P2 = 20*50/40 = 25 ml.
Water drops come in different sizes.
Let's imagine a drop weighs a quarter of a gram.
The molar mass of water is about 18g/mol, which means that 6.02 x 10^23 water molecules (AKA a mole of water molecules) weigh about 18 grams.
A quarter of a gram is 1/72 of 18, so it contains 1/72 times 6.02 x 10^23 molecules. That equals 8361111111111110000000 molecules.
In scientific notation that is... 8.36 x 10^21 molecules.
Produce a transmembrane proton electrochemical gradient as a result of the redox reactions. If protons flow back through the membrane, they enable mechanical work, such as rotating bacterial flagella.