Their linear inertia is equivalent to their masses. Let the inertia of the first moose be m₁ and the second be m₂.
m₁u + m₂u = (m₁ + m₂) x 1/3 u
3m₁ + 3m₂ = m₁ + m₂
3 m₁/m₂ + 3 = m₁/m₂ + 1
m₁/m₂ = 2
The ratio of their inertias is 2
I can't see that cube from here.
But if the length of the side of the cube is ' K ' units,
then the surface area of the cube is 6K² units², and
the volume of the cube is K³ units³.
The ratio of the surface area to the volume is
(6K² units²) / (K³ units³) = (6) / (K units) .
So for example, if the side of the cube is 2 inches, then
the ratio of surface area to volume is "3 per inch".
That's the answer. I did the whole thing in order to earn
the points, but I don't expect you to understand much of it,
because I see from your username that you suck at math.
I'm sorry you decided that. Now that you've put up the
brick wall, it'll be even harder for any math to find its way
in there, and you'll miss out on a lot of the fun.
The answer is voice onset time. It is a part of the production of stop consonants. Its definition is the length of time that passes between the release of a stop consonant and the start of the voicing and the vibration of the vocal folds.
A revolution equals 2*pi radians.
As the wheel rotates half every 4 seconds, then it means that it rotates half revolution.
Thus, the angular velocity of the wheel is given by:
w = (pi) / (4) = 0.79 rad / sec
answer
The wheel's angular velocity is 0.79 rad / sec