Oxidation half reaction is written as follows when using using reduction potential chart
example when using copper it is written as follows
CU2+ +2e- --> c(s) +0.34v
oxidasation is the loos of electron hence copper oxidation potential is as follows
cu (s) --> CU2+ +2e -0.34v
Answer:
See below
Explanation:
.75 = 1/2^(40/h)
log .75 / ( log 1/2) = 40 / h
<u>h = half life = 96.37683 min</u>
Answer: COMBINED FORCES
When forces act in the same direction, they combine to make a bigger force. When they act in opposite directions, they can cancel one another out. If the forces acting on an object balance, the object does not move, but may change shape.
Explanation:
You would know that the variable is quantitative if it shows any number to express the quantity. For example, quantitative variables are 50°C, 5 atm, 2 moles, 100 L and so on. A variable is qualitative if it expresses a relative quantity but not expressing a number. Examples would be: few, too hot, several, or even describing the characteristics of a variable. Hence, when the variable is in grams, then that would be quantitative.
Answer:
m H2(g) = 2.241 g H2(g)
Explanation:
- 2Al(s) + 3H2SO4(aq) → Al2(SO4)3(aq) + 3 H2(g)
limit reagent:
∴ Mw Al = 26.982 g/mol
∴ Mw H2SO4 = 98.0785 g/mol
⇒ n Al = (20 g Al)×(mol/26.982 g) = 0.7412 mol Al
⇒ n H2SO4 = ( 115 g H2SO4 )×(mol/98.0785 g) = 1.173 mol H2SO4
⇒ n H2 = (0.7412 mol Al)×(3 mol H2/ 2 mol Al) = 1.112 mol H2
∴ Mw H2 = 2.016 g/mol
⇒ g H2 = (1.112 mol H2)×(2.016 g/mol) = 2.241 g H2