Answer:
a-Interatomic bonds
Explanation:
First of all, it is not a force. Let alone be molecular force.
Your answer would be c
hope this helps
Answer:
(3) NaNO₃
Step-by-step explanation:
Sodium nitrate has ionic bonds, because it consists of Na⁺ and NO₃⁻ ions.
However, the nitrate ions have <em>covalent bonds</em> between the O atoms and the central N atoms.
(1) and (2) are <em>wrong</em>. Both N₂O₅ and HCl consist of nonmetals, so they are <em>covalent</em> compounds.
(4) is <em>wrong</em>. NaCl has <em>only ionic bonds</em> between the Na⁺ and Cl⁻ ions
Answer:
The molarity of urea in this solution is 6.39 M.
Explanation:
Molarity (M) is <em>the number of moles of solute in 1 L of solution</em>; that is

To calculate the molality, we need to know the number of moles of urea and the volume of solution in liters. We assume 100 grams of solution.
Our first step is to calculate the moles of urea in 100 grams of the solution,
using the molar mass a conversion factor. The total moles of 100g of a 37.2 percent by mass solution is
60.06 g/mol ÷ 37.2 g = 0.619 mol
Now we need to calculate the volume of 100 grams of solution, and we use density as a conversion factor.
1.032 g/mL ÷ 100 g = 96.9 mL
This solution contains 0.619 moles of urea in 96.9 mL of solution. To express it in molarity, we need to calculate the moles present in 1000 mL (1 L) of the solution.
0.619 mol/96.9 mL × 1000 mL= 6.39 M
Therefore, the molarity of the solution is 6.39 M.
<span>For isotopes of any element, the number of protons remains the same, BUT the number of neutrons changes. Since each of the isotopes listed is phosphorus, All three have 15 protons. (They have 16, 17 and 18 protons respectively.)</span>