Answer:
The minimum thickness of the soap bubble for destructive interference to occur is 225.56 nm.
Explanation:
Given;
wavelength of light, λ = 600 nm
The minimum thickness of the soap bubble for destructive interference to occur is given by;

where;
n is refractive index of soap film = 1.33

Therefore, the minimum thickness of the soap bubble for destructive interference to occur is 225.56 nm.
Answer:
F = 2389.603 N
Explanation:
Given:
Mass m = 1,369.4 kg
Initial velocity u = 28.9 m/s
Final velocity v = 20 m/s
Time t = 5.1 s
Find:
Net force
Computation:
a = (v - u)/t
a = (20 - 28.9)/5.1
a = -1.745 m/s²
F = ma
F = (1369.4)(1.745)
F = 2389.603 N
a substance dissolves.
like adding a soluble salt to water, it just dissolves, i.e dissociates homogeneously as water is able to dissociate salts (ionic compounds) into its ions. (it can also dissociate other non-ionic compounds like HCL)
the salt still remains chemically as a salt and is unchanged chemically thus it is not an indication of a chemical reaction as no chemical reaction has taken place.
the formation of a precipitate is a chemical reaction because a new substance (i.e new chemical) is formed. For example adding aqueous sodium hydroxide into an aqueous solution with CU2+ cations will form a blue precipitate (that is copper (II) hydroxide which is insoluble, hence it precipitates). Since a new chemical is formed, a chemical reaction has taken place and thus indicates a chemical reaction.
color change... im not sure but usually a color change will only occur when a new substance is formed. Like iron corrodes (i.e rust) slowly in moist air to form hydrated iron (III) oxide that is rust. (brown color).
usually adding a mixture to a mixture has little energy change, i.e little heat taken in by the reaction mixture or little heat given out by the reaction mixture. Whereas when a new substance is formed, there is usually noticeable energy change like the container gets colder or hotter (without heat being supplied of course). For example dissolving basic oxides into water releases energy ( more energy released than gained = exothermic reaction).
i think that should be the answer... hope it helped :D
Answer:
<em>a. 4.21 moles</em>
<em>b. 478.6 m/s</em>
<em>c. 1.5 times the root mean square velocity of the nitrogen gas outside the tank</em>
Explanation:
Volume of container = 100.0 L
Temperature = 293 K
pressure = 1 atm = 1.01325 bar
number of moles n = ?
using the gas equation PV = nRT
n = PV/RT
R = 0.08206 L-atm-

Therefore,
n = (1.01325 x 100)/(0.08206 x 293)
n = 101.325/24.04 = <em>4.21 moles</em>
The equation for root mean square velocity is
Vrms = 
R = 8.314 J/mol-K
where M is the molar mass of oxygen gas = 31.9 g/mol = 0.0319 kg/mol
Vrms =
= <em>478.6 m/s</em>
<em>For Nitrogen in thermal equilibrium with the oxygen, the root mean square velocity of the nitrogen will be proportional to the root mean square velocity of the oxygen by the relationship</em>
= 
where
Voxy = root mean square velocity of oxygen = 478.6 m/s
Vnit = root mean square velocity of nitrogen = ?
Moxy = Molar mass of oxygen = 31.9 g/mol
Mnit = Molar mass of nitrogen = 14.00 g/mol
= 
= 0.66
Vnit = 0.66 x 478.6 = <em>315.876 m/s</em>
<em>the root mean square velocity of the oxygen gas is </em>
<em>478.6/315.876 = 1.5 times the root mean square velocity of the nitrogen gas outside the tank</em>
Ли делать лазерную коррекцию в России и Казахстана в том числе в области образования и культуры и д на русском для