Answer:
See below...
Explanation:
Let’s express ⟨α⟩ in terms of ωi , ωf , and Δt. and torque in terms of It , ωi , ωf , and Δt.
STEP 1.
The rate of change of angular velocity is Angular acceleration.
The net change in angular velocity is Average angular acceleration divided by the elapsed time.
⟨α⟩ = ω f −ω i/Δt
STEP 2.
Torque is assumed this way
dω
τ = I ----
dt
.
⟨τ ⟩ = I t (ω f −ω i )/Δt
When hot tea is mixed to chilled coke, tea loses heat and coke gains heat. Thus, tea cools down but coke gets heated. Because it is liquid and liquid does not totally cool down to the ambient temperature, it and the iced drink will eventually reach the same temperature.
Answer:
Now, think on the electrons flowing through a conductor (we can think on the resistor as a simple conductor, like a piece of metal)
Inside the conductor, we have some "fixed" (they do not flow with the current) electrons, such that as the current flows in the conductor, the flowing electrons can interact with the fixed ones in the conductor. Then we can have collisions inside the conductor.
In those collisions, the flowing electrons leave energy in the conductor, and as we know, heat is a form of energy. Then when we have a lot of these collisions, the temperature of the conductor increases.
That is why electronic devices get hot.
Also, as the temperature of a conductor increases, the electrons inside of it start to move more, then the probability of an interaction with the flowing electrons increases.
Answer:
it will have a stronger attraction force
Explanation:
Answer:
46,502,000 times
Explanation:
The question asked how many times back <em>and </em>forth, so you divide by 2 (so in half); and if it's 93,004,000 then you divide that by 2 which equals, 46,502,000.