1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrew [12]
3 years ago
5

the pressure of a sample of gas was 97.8 kPa and the volume of the gas was 3.75 l. if the gas occupied a container with a volume

of 8.00 L, what would the pressure in the container be?
Physics
1 answer:
sveticcg [70]3 years ago
3 0
If the temperature stays the same then:
P1V1=P2V2 
so:
97.8*3.75=8P
366.75=8P
P= 45.84 kPa is the new pressure
You might be interested in
For several reasons you should only use hospital aproved lotions two of the reasons are because they cause breakdown of latex gl
ASHA 777 [7]
Besides that, non hospital approved lotions make your skin very dry
8 0
3 years ago
Which statement is the correct representation of these electric field lines?
irinina [24]
C . plate a is negatively charged and plate b is positively charged
6 0
3 years ago
Read 2 more answers
Bill throws a tennis ball to his dog. He throws the ball at a speed of 15 m/s at an angle of 30° to the horizontal. Assume he th
Sidana [21]

1a) Bill and the dog must have a speed of 13.0 m/s

1b) The speed of the dog must be 22.5 m/s

2a) The ball passes over the outfielder's head at 3.33 s

2b) The ball passes 1.2 m above the glove

2c) The player can jump after 2.10 s or 3.13 s after the ball has been hit

2d) One solution is when the player is jumping up, the other solution is when the player is falling down

Explanation:

1a)

The motion of the ball in this problem is a projectile motion, so it follows a parabolic path which consists of two independent motions:

- A uniform motion (constant velocity) along the horizontal direction

- An accelerated motion with constant acceleration (acceleration of gravity) in the vertical direction

In part a), we want to know at what speed Bill and the dog have to run in order to intercept the ball as it lands on the ground: this means that Bill and the dog must have the same velocity as the horizontal velocity of the ball.

The ball's initial speed is

u = 15 m/s

And the angle of projection is

\theta=30^{\circ}

So, the ball's horizontal velocity is

v_x = u cos \theta = (15)(cos 30)=13.0 m/s

And therefore, Bill and the dog must have this speed.

1b)

For this part, we have to consider the vertical motion of the ball first.

The vertical position of the ball at time t is given by

y=u_yt+\frac{1}{2}at^2

where

u_y = u sin \theta = (15)(sin 30) = 7.5 m/s is the initial vertical velocity

a=g=-9.8 m/s^2 is the acceleration of gravity

The ball is at a position of y = 2 m above the ground when:

2=7.5t + \frac{1}{2}(-9.8)t^2\\4.9t^2-7.5t+2=0

Which has two solutions: t=0.34 s and t=1.19 s. We are told that the ball is falling to the ground, so we have to consider the second solution, t = 1.19 s.

The horizontal distance covered by the ball during this time is

d=v_x t =(13.0)(1.19)=15.5 m

The dog must be there 0.5 s before, so at a time

t' = t - 0.5 = 0.69 s

So, the speed of the dog must be

v_x' = \frac{d}{t'}=\frac{15.5}{0.69}=22.5 m/s

2a)

Here we just need to consider the horizontal motion of the ball.

The horizontal distance covered is

d=98 m

while the horizontal velocity of the ball is

v_x = u cos \theta = (34)(cos 30)=29.4 m/s

where u = 34 m/s is the initial speed.

So, the time taken for the ball to cover this distance is

t=\frac{d}{v_x}=\frac{98}{29.4}=3.33 s

2b)

Here we need to calculate the vertical position of the ball at t = 3.33 s.

The vertical position is given by

y= h + u_y t + \frac{1}{2}at^2

where

h = 1.2 m is the initial height

u_y = u sin \theta = (34)(sin 30)=17.0 m/s is the initial vertical velocity

a=g=-9.8 m/s^2 is the acceleration of gravity

Substituting t = 3.33 s,

y=1.2+(17)(3.33)+\frac{1}{2}(-9.8)(3.33)^2=3.5 m

And sinc the glove is at a height of y' = 2.3 m, the difference in height is

y - y' = 3.5 - 2.3 = 1.2 m

2c)

In order to intercept the ball, he jumps upward at a vertical speed of

u_y' = 7 m/s

So its position of the glove at time t' is

y'= h' + u_y' t' + \frac{1}{2}at'^2

where h' = 2.3 m is the initial height of the glove, and t' is the time from the moment when he jumps. To catch the ball, the height must be

y' = y = 3.5 m (the height of the ball)

Substituting and solving for t', we find

3.5 = 2.3 + 7t' -4.9t'^2\\4.9t'^2-7t'+12 = 0

Which has two solutions: t' = 0.20 s, t' = 1.23 s. But this is the time t' that the player takes to reach the same height of the ball: so the corresponding time after the ball has been hit is

t'' = t -t'

So we have two solutions:

t'' = 3.33 s - 0.20 s = 3.13 s\\t'' = 3.33 s - 1.23 s = 2.10 s

So, the player can jump after 2.10 s or after 3.13 s.

2d)

The reason for the two solutions is the following: the motion of the player is a free fall motion, so initially he jump upwards, then because of gravity he is accelerated downward, and therefore eventually he reaches a maximum height and then he  falls down.

Therefore, the two solutions corresponds to the two different part of the motion.

The first solution, t'' = 2.10 s, is the time at which the player catches the ball while he is in motion upward.

On the other hand, the second solution t'' = 3.13 s, is the time at which the player catches the ball while falling down.

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

7 0
3 years ago
When a falling meteoroid is at a distance above the Earth's surface of 3.40 times the Earth's radius, what is its acceleration d
Alchen [17]

Answer:

g = 0.85 ms^{-2}

Explanation:

g = \frac{GM}{h^{2} }

were; g is the acceleration due to Earth's gravity, G is Newton's gravitation constant (6.674 x 10^{-11} Nm^{2}kg^{-2}), M is the mass of the earth (5.972 x 10^{24} kg), and h is the distance of meteoroid to the earth.

h = 3.40 x R

  = 3.40 x 6371 km

h = 21661.4 km

  = 21661400 m

Thus,

g = \frac{6.674*10^{-11}*5.972*10^{24}  }{(21661400)^{2} }

  = \frac{3.9857 *10^{14} }{4.6922*10^{14} }

  = 0.84944

g = 0.85 ms^{-2}

The acceleration due to the Earth's gravitation is 0.85 ms^{-2}.

6 0
3 years ago
Why was Dalton's atomic theory difficult for other scientists to accept? please help?!!!!!
Debora [2.8K]
It is cellmicktomic atoms
7 0
3 years ago
Other questions:
  • Jane puts some water into an electric kettle and then she connects it to the power source. She observes that after some time the
    7·2 answers
  • Here are the positions at three different times for a bee in flight (a bee's top speed is about 7 m/s). Time 6.6 s 6.9 s 7.2 s P
    9·1 answer
  • Is a bath tub renewable or not?
    5·2 answers
  • In order to change the color of light you must change
    5·1 answer
  • How are the raincoats waterproof? explain​
    13·1 answer
  • A glass tube (open at both ends) of length L is positioned near an audio speaker of frequency f = 770 Hz. For what values of L w
    9·1 answer
  • Latent heat of fusion refers to which changes of state?
    11·1 answer
  • An object was dropped from the plane with 1000 km above the ground with a mass of 300 kg. Find the acceleration of the object ea
    14·1 answer
  • Answer? physics Q for 3rd secondry
    8·1 answer
  • What type of electromagnetic wave has a frequency of around 1012 Hz?​
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!