So we have a structured form, but can still move. If we had a cell wall we would be stiff objects since it’s just a cell membrane we can still have movement
Answer:
K = 373.13 N/m
Explanation:
The force of the spring is equals to:
Fe - m*g = 0 => Fe = m*g
Using Hook's law:
K*X = m*g Solving for K:
K = m/X * g
In this equation, m/X is the inverse of the given slope. So, using this value we can calculate the spring's constant:
K = 10 / 0.0268 = 373.13N/m
The first one is dependent variable
<span />
Answer:
ax = -3.29[m/s²]
ay = -1.9[m/s²]
Explanation:
We must remember that acceleration is a vector and therefore has magnitude and direction.
In this case, it is accelerating downwards, therefore for a greater understanding we will make a diagram of said vector, this diagram is attached.
![a_{x}=-3.8*cos(30) = -3.29 [m/s^{2}]\\ a_{y}=-3.8*sin(30) = -1.9 [m/s^{2}]](https://tex.z-dn.net/?f=a_%7Bx%7D%3D-3.8%2Acos%2830%29%20%3D%20-3.29%20%5Bm%2Fs%5E%7B2%7D%5D%5C%5C%20a_%7By%7D%3D-3.8%2Asin%2830%29%20%3D%20-1.9%20%5Bm%2Fs%5E%7B2%7D%5D)
Answer:
Force = 35 N
Explanation:
From Newton's third law of motion, the boy must apply a force greater than the weight of the sled to lift it.
weight of sled = mg
where m is its mass and g the force of gravity on it.
weight of sled = 50 N
Force applied by the boy on the sled = 15 N
Since the force applied on the sled by the boy is lesser than the weight of the sled, then;
Force that the sled exerts on the student = 50 - 15
= 35 N
The force exerted by the sled on the student is 35 N.