The jnd for a 100-gram weight, according to Weber's law will be 10 gram.
<h3>What is Weber's law?</h3>
It should be noted that Weber's law asserts that the nature of any given stimulus will always affect how change is perceived. In other words, the size, weight, importance, etc. of the prior situation and the significance of the change both influence whether a change will be observed.
In this case, it was given that the jnd for a 10-gram weight was 1 gram, therefore, the jnd for 100 gram will be;
= 100 / 10
= 10 gram
Therefore, jnd for a 100-gram weight, according to Weber's law will be 10 grams.
Learn more about weight on:
brainly.com/question/19753744
#SPJ1
Answer:
19 N
Explanation:
From the question given above, the following data were obtained:
Pressure (P) = 1.9 kPa
Length (L) = 10 cm
Force (F) =?
Next, we shall convert 1.9 KPa to N/m². This can be obtained as follow:
1 KPa = 1000 N/m²
Therefore,
1.9 KPa = 1.9 KPa × 1000 N/m² / 1 KPa
1.9 KPa = 1900 N/m²
Thus, 1.9 KPa is equivalent to 1900 N/m².
Next, we shall convert 10 cm to m. This can be obtained as follow:
100 cm = 1 m
Therefore,
10 cm = 10 cm × 1 m / 100 cm
10 cm = 0.1 m
Thus, 10 cm is equivalent to 0.1 m
Next, we shall determine the area of the square. This can be obtained as follow:
Length (L) = 0.1 m
Area of square (A) =?
A = L²
A = 0.1²
A = 0.01 m²
Thus, the area of the square is 0.01 m².
Finally, we shall determine the force that must be exerted on the sensor in order for it to turn red. This can be obtained as follow:
Pressure (P) = 1900 N/m²
Area (A) = 0.01 m²
Force (F) =?
P = F/A
1900 = F / 0.01
Cross multiply
F = 1900 × 0.01
F = 19 N
Therefore, a force of 19 N must be exerted on the sensor in order for it to turn red.
Answer:
Mass = 0.04 Kg
Explanation:
Given the following data;
Density = 800 kg/m³
Volume = 5 * 10^{-5} m³
To find the mass of the object;
Density can be defined as mass all over the volume of an object.
Simply stated, density is mass per unit volume of an object.
Mathematically, density is given by the formula;

Making mass the subject of formula, we have;

Substituting the values into the formula, we have;

Mass = 0.04 Kg
D.Power has a time component while energy does not. This is because power is the RATE at which work is performed.
Answer:
- <u>77.8 m/s, downward</u>
Explanation:
For uniform acceleration motion, the average speed is equal to half the soum of the initial velocity, Vi, and the final velocity, Vf
- Average speed = (Vf + Vi)/2
Also, by definition, the average speed is the distance divided by the time:
- Average speed = distance / time
Then:
Other kinematic equation for uniform acceleration is:
Since the window is falling and the air resistance is ignored, a = g (gravitational acceleration ≈ 9.8m/s²)
Replacing the known values we can set a system of two equations:
From (Vf + Vi)/2 = 300m/6.62s
(Vf + Vi) = 2 × 300m/6.62s
- Vf + Vi = 90.634 equation 1
From Vf = Vi + a×t
Vf - Vi = 9.8 (6.62)
- Vf - Vi = 64.876 equation 2
Adding the two equations:
- Vf = 77.8 m/s downward (velocities must be reported with their directions)