Answer:
v₂ = 63.62 m / s
Explanation:
For this exercise in fluid mechanics we will use Bernoulli's equation
P₁ + ρ g v₁² + ρ g y₁ = P₂ + ρ g v₂² + ρ g y₂
where the subscript 1 refers to the inside of the wing and the subscript 2 to the top of the wing.
We will assume that the distance between the two parts is small, so y₁ = y₂
P₁-P₂ = ρ g (v₂² - v₁²)
pressure is defined by
P = F / A
we substitute
ΔF / A = ρ g (v₂² - v₁²)
v₂² = 
suppose that the area of the wing is A = 1 m²
we substitute
v₂² =
v₂² = 79.10 + 3969
v₂ = √4048.1
v₂ = 63.62 m / s
Answer:
◆ See the attachment photo.
◆ Don't forget to thanks
◆ Mark as brainlist.
The law applied here is Newton's first law, also known as, law of inertia.
This law states that: A body will retain its state of rest or motion unless acted upon by an external force.
If you are moving and the bus suddenly stops, your body will lurch forward trying to retain its state of motion until it comes to rest and changes its state by the external force acted on it.
If you are at rest and the bus suddenly moves, your body will lurch backwards trying to retain its state of rest and opposing the force of motion until it is forced to change its state by this force.
Answer:
20.96 h
Explanation:
The perimeter of the track is 2*pi*r = 20pi miles
In 10 hours, car B would have moved 20miles. So, when Car A leaves from point X, car B is 20pi - 20 miles from point X counter-clockwise and car A.
From here, we can express the distance of A from X like this:
xa = 3t
And the distance of B would be:
xb = 20pi - 20 - 2t
The time t where they would passed each other and put 12 miles between them would be the one where xa - xb is equal to 12:
xa - xb = 12
3t - (20pi - 20 - 2t) = 12
5t = 20 pi - 8
t = (20pi - 8)/5 = 10.96 h
Remember to add this value to the 10 hours car B had already been racing:
t = 20.96h
In a constant acceleration of 3m per second, after 10 seconds,
3 x 10 = 30
B. 30m/s is your answer
hope this helps :D