1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aliina [53]
3 years ago
5

It takes a wave traveling on a string 1.2 s to complete a full cycle. You measure the distance it takes to repeat itself to be 1

.8 m. How fast is the wave moving?
Physics
1 answer:
MArishka [77]3 years ago
4 0

Answer:

1.5 m/s.

Explanation:

The Speed of a wave is the product of the wavelength and its  frequency or it is the ratio of it wavelength and its Period. It can be expressed mathematically as

V = λf or λ/T .............................. Equation 1

Where V = speed of the wave travelling on the string, λ = wavelength of the wave, T = period of the wave, F = frequency of the wave.

Given: λ = 1.8 m ( distance it takes to repeat itself), T = 1.2 s (Time taken to complete a full cycle)

Substitute into equation 1

V = 1.8/1.2

V = 1.5 m/s.

Hence the wave is 1.5 m/s fast.

You might be interested in
What is the ionisation energy of an atom
V125BC [204]

Explanation:

its the minimum amount of energy required to remove the most loosely bound electron

8 0
4 years ago
Read 2 more answers
Let surface S be the boundary of the solid object enclosed by x^2+z^2=4, x+y=6, x=0, y=0, and z=0. and, let f(x,y,z)=(3x)i+(x+y+
babunello [35]

a. I've attached a plot of the surface. Each face is parameterized by

• \mathbf s_1(x,y)=x\,\mathbf i+y\,\mathbf j with 0\le x\le2 and 0\le y\le6-x;

• \mathbf s_2(u,v)=u\cos v\,\mathbf i+u\sin v\,\mathbf k with 0\le u\le2 and 0\le v\le\frac\pi2;

• \mathbf s_3(y,z)=y\,\mathbf j+z\,\mathbf k with 0\le y\le 6 and 0\le z\le2;

• \mathbf s_4(u,v)=u\cos v\,\mathbf i+(6-u\cos v)\,\mathbf j+u\sin v\,\mathbf k with 0\le u\le2 and 0\le v\le\frac\pi2; and

• \mathbf s_5(u,y)=2\cos u\,\mathbf i+y\,\mathbf j+2\sin u\,\mathbf k with 0\le u\le\frac\pi2 and 0\le y\le6-2\cos u.

b. Assuming you want outward flux, first compute the outward-facing normal vectors for each face.

\mathbf n_1=\dfrac{\partial\mathbf s_1}{\partial y}\times\dfrac{\partial\mathbf s_1}{\partial x}=-\mathbf k

\mathbf n_2=\dfrac{\partial\mathbf s_2}{\partial u}\times\dfrac{\partial\mathbf s_2}{\partial v}=-u\,\mathbf j

\mathbf n_3=\dfrac{\partial\mathbf s_3}{\partial z}\times\dfrac{\partial\mathbf s_3}{\partial y}=-\mathbf i

\mathbf n_4=\dfrac{\partial\mathbf s_4}{\partial v}\times\dfrac{\partial\mathbf s_4}{\partial u}=u\,\mathbf i+u\,\mathbf j

\mathbf n_5=\dfrac{\partial\mathbf s_5}{\partial y}\times\dfrac{\partial\mathbf s_5}{\partial u}=2\cos u\,\mathbf i+2\sin u\,\mathbf k

Then integrate the dot product of <em>f</em> with each normal vector over the corresponding face.

\displaystyle\iint_{S_1}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{6-x}f(x,y,0)\cdot\mathbf n_1\,\mathrm dy\,\mathrm dx

=\displaystyle\int_0^2\int_0^{6-x}0\,\mathrm dy\,\mathrm dx=0

\displaystyle\iint_{S_2}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,0,u\sin v)\cdot\mathbf n_2\,\mathrm dv\,\mathrm du

\displaystyle=\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=-8

\displaystyle\iint_{S_3}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^6\mathbf f(0,y,z)\cdot\mathbf n_3\,\mathrm dy\,\mathrm dz

=\displaystyle\int_0^2\int_0^60\,\mathrm dy\,\mathrm dz=0

\displaystyle\iint_{S_4}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,6-u\cos v,u\sin v)\cdot\mathbf n_4\,\mathrm dv\,\mathrm du

=\displaystyle\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=\frac{40}3+6\pi

\displaystyle\iint_{S_5}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^{\frac\pi2}\int_0^{6-2\cos u}\mathbf f(2\cos u,y,2\sin u)\cdot\mathbf n_5\,\mathrm dy\,\mathrm du

=\displaystyle\int_0^{\frac\pi2}\int_0^{6-2\cos u}12\,\mathrm dy\,\mathrm du=36\pi-24

c. You can get the total flux by summing all the fluxes found in part b; you end up with 42π - 56/3.

Alternatively, since <em>S</em> is closed, we can find the total flux by applying the divergence theorem.

\displaystyle\iint_S\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\iiint_R\mathrm{div}\mathbf f(x,y,z)\,\mathrm dV

where <em>R</em> is the interior of <em>S</em>. We have

\mathrm{div}\mathbf f(x,y,z)=\dfrac{\partial(3x)}{\partial x}+\dfrac{\partial(x+y+2z)}{\partial y}+\dfrac{\partial(3z)}{\partial z}=7

The integral is easily computed in cylindrical coordinates:

\begin{cases}x(r,t)=r\cos t\\y(r,t)=6-r\cos t\\z(r,t)=r\sin t\end{cases},0\le r\le 2,0\le t\le\dfrac\pi2

\displaystyle\int_0^2\int_0^{\frac\pi2}\int_0^{6-r\cos t}7r\,\mathrm dy\,\mathrm dt\,\mathrm dr=42\pi-\frac{56}3

as expected.

4 0
3 years ago
hello friends,i need your help my home work now in physics,topic:motion.40 marks +brainliest if correct .​
fenix001 [56]

Answer:

See below

Explanation:

Vertical position is given by

df = do + vo t - 1/2 a t^2      df = final position = 0 (on the ground)

                                           do =original position = 2 m

                                            vo = original <u>VERTICAL</u> velocity = 0

                                            a = acceleration of gravity = 9.81 m/s^2

THIS BECOMES

0 = 2 + 0 * t  - 1/2 ( 9.81)t^2

  to show t =<u> .639 seconds to hit the ground </u>

During this .639 seconds it flies horizontally at 10 m/s for a distance of

      10 m/s * .639 s =<u> 6.39 m </u>

5 0
1 year ago
If force and displacement are in opposite directions, will work be positive or negative?
eimsori [14]
It would be negative regardless of what you define as a positive direction.
8 0
3 years ago
At t=0 a ball is projected vertically upward from a roof of a building of height 68.1 meters with a velocity of 42.4 m/s. The ba
Finger [1]

Answer:

7.45 s.

Explanation:

Given:

h = 68.1 m

vi = 0 m/s

vf = 42.4 m/s

g = 9.81 m/s^2

Using,

h = vi*t +1/2*(a*t^2)

68.1 = 1/2 * (9.81*t^2)

t = sqrt((68.1*2)/9.81)

= 3.726 s.

Total time of flight = 2*t

= 2 * 3.726

= 7.45 s.

4 0
3 years ago
Read 2 more answers
Other questions:
  • What conditions must be met if a man-made satellite is to attain a circular orbit around the earth?(choose as many as apply)
    15·1 answer
  • Helppp, will give brainliest answer !!
    15·1 answer
  • Tim puts his spare change in a jar each day when he comes home. When the jar is full he separates the coins and takes them to th
    15·1 answer
  • The diagram below illustrates the law of reflection.
    15·1 answer
  • Drag the tiles to the correct boxes to complete the pairs.
    11·1 answer
  • Circular motion occurs when an object is traveling with
    6·1 answer
  • Water is pouring into an inverted cone at the rate of 3.14 cubic meters per minute. The height of the cone is 10 meters and the
    10·1 answer
  • Please help me give 20 points
    14·1 answer
  • Which characteristic does inertia describe
    13·2 answers
  • If a wave has a wavelength of 10 m and a speed of 2.5×108 m/s (this is 250000000 m/s) what is the frequency of the wave?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!