To make a educational guess based on the your observations
Explanation:
Given parameters:
Distance hopped = 84m
Displacement = 84m due east
Time = 7s
Unknown:
Speed of kangaroo = ?
Velocity of kangaroo = ?
Solution:
To solve this problem,
Speed =
=
= 12m/s
Velocity =
=
= 12m/s due east
<span>From the point of view of the astronaut, he travels between planets with a speed of 0.6c. His distance between the planets is less than the other bodies around him and so by applying Lorentz factor, we have 2*</span>√1-0.6² = 1.6 light hours. On the other hand, from the point of view of the other bodies, time for them is slower. For the bodies, they have to wait for about 1/0.6 = 1.67 light hours while for him it is 1/(0.8) = 1.25 light hours. The remaining distance for the astronaut would be 1.67 - 1.25 = 0.42 light hours. And then, light travels in all frames and so the astronaut will see that the flash from the second planet after 0.42 light hours and from the 1.25 light hours is, 1.25 - 0.42 = 0.83 light hours or 49.8 minutes.
Answer:
- The distance between the charges is 5,335.026 m
Explanation:
To obtain the forces between the particles, we can use Coulomb's Law in scalar form, this is, the force between the particles will be:

where k is Coulomb's constant,
and
are the charges and d is the distance between the charges.
Working a little the equation, we can take:


And this equation will give us the distance between the charges. Taking the values of the problem

(the force has a minus sign, as its attractive)




And this is the distance between the charges.
Answer:
The highest vertical position is where your maximum potential energy lies. At the highest altitude point of course ! This is when the kinetic energy is only due to horizontal motion (since the vertical component reaches zero).
Explanation:
i looked it up ok