Atoms can be the source of both nuclear and chemical energy. Nuclear energy involves the atom's nucleus; chemical energy involves the atom's electrons—subatomic particles that surround the nucleus.
Answer:
(A) The shorter the wavelength, the more total energy the wave contains.
(B) The longer the wavelength, the less total energy the wave contains.
Explanation:
The wavelength (λ), frequency (f) and energy (E) are interrelated. This relationship between them is represented in the following equations:
λ = v/f and E = hf
Where;
λ = wavelength (m)
f = frequency (Hz)
E = energy (Joules)
v and h represents speed of light and Planck's constants respectively.
Combining both equations, E = hc/λ
This equation shows that ENERGY (E) is directly proportional to the frequency (f) but inversely proportional to the wavelength (λ). This means that "the shorter the wavelength, the more total energy a wave contains" and vice versa.
However, the higher the frequency, the more the total energy the wave contains and vice versa.
Answer:
1.22 mL
Explanation:
Let's consider the following balanced reaction.
2 AgNO₃ + BaCl₂ ⇄ Ba(NO₃)₂ + 2 AgCl
The molar mass of silver chloride is 143.32 g/mol. The moles corresponding to 0.525 g are:
0.525 g × (1 mol/143.32 g) = 3.66 × 10⁻³ mol
The molar ratio of AgCl to BaCl₂ is 2:1. The moles of BaCl₂ are 1/2 × 3.66 × 10⁻³ mol = 1.83 × 10⁻³ mol.
The volume of 1.50 M barium chloride containing 1.83 × 10⁻³ moles is:
1.83 × 10⁻³ mol × (1 L/1.50 mol) = 1.22 × 10⁻³ L = 1.22 mL