The magnitude of a star as it would appear to a hypothetical observer at a distance of 10 parsecs or 32.6 light-years. This rates how visible celestial bodies are when they are all viewed from the same distance. Luminosity: The brightness of a star in comparison with that of the sun.
The correct answer to your question is: <span>C) tin (IV) bromide, SnBr₄</span>
Answer:
Kc = [H₂S]² . [CH₄] / [ H₂O]⁴ . [CS₂]
Explanation:
The equilibrium constant indicates the % of the yield reaction and can shows where the reaction is going to be equilibrated.
It works with molar concentrations on the equilibrium and it does not consider the solids compounds
Kc also can be modified by the time of the reaction.
This reaction is:
CS₂ (g) + 4 H₂O(g) ⇌ CH₄ (g) + 2H₂S (g)
Kc = [H₂S]² . [CH₄] / [ H₂O]⁴ . [CS₂]
Answer:
when it comes to adding or subtracting numbers, his final answer should have the same number of decimal places as the least precise value.
For example if you add 2 numbers; 10.443 + 3.5 , 10.443 has 3 decimal places and 3.5 has only one decimal place.
Therefore 3.5 is the less precise value.
So when adding these 2 values the final answer should have only one decimal place.
after adding we get 13.943 but it can have upto one decimal place. then the second decimal place is less than 5 so the answer should be rounded off to 13.9.
the answer is the same number of decimal places as the least precise value
Explanation:
I think this is the answer I'm not sure
An electron in a hydrogen atom would have 10 states for a 3d orbital, like any other element.
n = 3, l = 2, in one of ml = 2, 1, 0, -1, -2 each with ms = -½ or +½ or a total of 10 possible states.
None of these are a ground state of an electron in the hydrogen atom.
Enjoy :)