Answer:
12.5 g of Li are needed in order toproduce 0.60 moles of Li₃N
Explanation:
The reaction is:
6Li(s) + N₂(g) → 2Li₃N(s)
If nitrogen is in excess, the lithium is the limiting reactant.
Ratio is 2:6
2 moles of nitride were produced by 6 moles of Li
Then, 0.6 moles of nitride were produced by (0.6 .6)/ 2 = 1.8 moles of Li
Let's convert the moles to mass → 1.8 mol . 6.94 g/ 1mol = 12.5 g of Li
To find the mass in grams of Selenium, you use the moles you have and multiply it by the molar mass.
5489 Moles Se * (79g Se / 1mole Se) =433631g of Se
Dimensional analysis is a convenient technique to determine if the solution you're following would lead you to the answer that you're looking for. It is the manipulation of units. Like units are cancelled whenever they appear on the numerator and the denominator side. For example, if the speed is 5 m/s and the time is 2 s, the distance would be:
(m/s)*(s) = m
So, you would know that the solution would be 5*2 because it yields the unit for distance.
Hence, dimensional analysis could prevent crash by calculating the right velocities or distances of the two vessels to prevent collision.
Answer:
Aluminium
Explanation:
Aluminium is the only atom that has 13 electron
Answer:
true
Explanation:
PV=nRT
The ideal gas law states that PV = NkT, where P is the absolute pressure of a gas, V is the volume it occupies, N is the number of atoms and molecules in the gas, and T is its absolute temperature. The constant R is called the Boltzmann constant