Answer: 7 kg bowling ball must move with a speed of 2.8 m/s so that it has the same kinetic energy.
Explanation:
Kinetic energy is the energy possessed by a body by virtue of its motion.

m = mass of object
v= velocity of the object

b) for a 7 kg bowl to have kinetic energy of 27 Joules:



Thus 7 kg bowling ball must move with a speed of 2.8 m/s so that it has the same kinetic energy
Answer:
<em>Correct choice: b 4H</em>
Explanation:
<u>Conservation of the mechanical energy</u>
The mechanical energy is the sum of the gravitational potential energy GPE (U) and the kinetic energy KE (K):
E = U + K
The GPE is calculated as:
U = mgh
And the kinetic energy is:

Where:
m = mass of the object
g = gravitational acceleration
h = height of the object
v = speed at which the object moves
When the snowball is dropped from a height H, it has zero speed and therefore zero kinetic energy, thus the mechanical energy is:

When the snowball reaches the ground, the height is zero and the GPE is also zero, thus the mechanical energy is:

Since the energy is conserved, U1=U2
![\displaystyle mgH=\frac{1}{2}mv^2 \qquad\qquad [1]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20mgH%3D%5Cfrac%7B1%7D%7B2%7Dmv%5E2%20%20%20%20%5Cqquad%5Cqquad%20%5B1%5D)
For the speed to be double, we need to drop the snowball from a height H', and:

Operating:
![\displaystyle mgH'=4\frac{1}{2}m(v)^2 \qquad\qquad [2]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20mgH%27%3D4%5Cfrac%7B1%7D%7B2%7Dm%28v%29%5E2%20%5Cqquad%5Cqquad%20%5B2%5D)
Dividing [2] by [1]

Simplifying:

Thus:
H' = 4H
Correct choice: b 4H
Mv + mv = 2mv providing each momentum is in the same direction.
1/2 mv^2 + 1/2 mv^2 = mv^2
The car heads east at an average speed of 50 miles per hour from the intersection point towards East. The truck heads east at an average speed of 60 miles per hour from the intersection point towards South.
The distance of car from the intersection point after t hours is
.
The distance of truck from the intersection point after t hours is
.
Since these distances are perpendicular to each other, distance apart d (in miles) at the end of t hours is

Thus the distance apart is 