Her daughter, nice brainteaser
Answer:
257 kN.
Explanation:
So, we are given the following data or parameters or information in the following questions;
=> "A jet transport with a landing speed
= 200 km/h reduces its speed to = 60 km/h with a negative thrust R from its jet thrust reversers"
= > The distance = 425 m along the runway with constant deceleration."
=> "The total mass of the aircraft is 140 Mg with mass center at G. "
We are also give that the "aerodynamic forces on the aircraft are small and may be neglected at lower speed"
Step one: determine the acceleration;
=> Acceleration = 1/ (2 × distance along runway with constant deceleration) × { (landing speed A)^2 - (landing speed B)^2 × 1/(3.6)^2.
=> Acceleration = 1/ (2 × 425) × (200^2 - 60^2) × 1/(3.6)^2 = 3.3 m/s^2.
Thus, "the reaction N under the nose wheel B toward the end of the braking interval and prior to the application of mechanical braking" = The total mass of the aircraft × acceleration × 1.2 = 15N - (9.8 × 2.4 × 140).
= 140 × 3.3× 1.2 = 15N - (9.8 × 2.4 × 140).
= 257 kN.
Answer:
7.48 x 10⁵ m
Explanation:
g = 7.86 N/kg
M = 5.97 x 10²⁴ kg, R = 6.37 x 10⁶ m.
Find height h
g = GM/(R + h)²
(R + h)² = GM/g = 6.67 x 10⁺¹¹ x 5.97 x 10²⁴ /7.86 = 5.066 x 10¹³
R + h = 7.12 x 10⁶ m
so
h = 7.12 x 10⁶ - 6.37 x 10⁶ = 7.48 x 10⁵ m
The power required to force the current of 4.13 A to flow through the conductor is 1927.43 watts
<h3>What is power? </h3>
This is defined as the rate in which energy is consumed. Electrical power is expressed mathematically as:
Power (P) = square current (I²)× resistancet (R)
P = I²R
<h3>How to determine the power</h3>
- Current (I) = 4.13 A
- Resistance (R) = 113 ohms
- Power (P) =?
P = I²R
P = 4.13² × 113
P = 1927.43 watts
Thus, the power required is 1927.43 watts
Learn more about electrical power:
brainly.com/question/64224
#SPJ1