Answer:

Explanation:
Angular Momentum Formula For atoms=
Where:
m_{s}h is the momentum for one atom (m_s is the spin quantum number)
N is the number of atoms=
Where:
N_A is Avogadro Number
m is the mass of sphere
M is the molar mass of iron
Angular Momentum Formula For atoms will be=
Angular Momentum of Sphere=
where:
So,Angular Momentum of Sphere=
Angular Momentum of sphere=Angular Momentum of atoms
=
=
For iron,
. So above equation will become:

Where R=2mm, M=0.0558Kg/mol (Molar Mass of iron),h=Planck's Constant/2π


The answer to this question is: it depends. It depends on the arrangement of the capacitors in a circuit: it can be either in series or in parallel. The difference is shown in the picture.
Capacitors are like batteries in a way that they store power from the source. It has some rules depending on the type of circuit. For parallel circuits, the voltage across each capacitor is equal. Therefore, V₁=V₂=V₃.
On the other hand, if the capacitors are arranged in series, the voltage across each capacitor should add up to the total voltage of the source. Therefore, V₁+V₂+V₃ = Total Voltage.
Power used by the clock=1.03 W
Explanation:
resistance= 14000 ohm
voltage=120 V
The formula for the power is given by

P=(120)²/14000
P=1.03 W
This question sounds like it came after some activity where
some forces were observed. Since we were not there, and
we don't know what the activity was, we don't know what forces
were observed, and we have no clue to how they might be related
to the motion of the Earth around the sun.