Answer: Part 1: Propellant Fraction (MR) = 8.76
Part 2: Propellant Fraction (MR) = 1.63
Explanation: The Ideal Rocket Equation is given by:
Δv = 
Where:
is relationship between exhaust velocity and specific impulse
is the porpellant fraction, also written as MR.
The relationship
is: 
To determine the fraction:
Δv = 

Knowing that change in velocity is Δv = 9.6km/s and
= 9.81m/s²
<u>Note:</u> Velocity and gravity have different measures, so to cancel them out, transform km in m by multiplying velocity by 10³.
<u />
<u>Part 1</u>: Isp = 450s

ln(MR) = 
ln (MR) = 2.17
MR = 
MR = 8.76
<u>Part 2:</u> Isp = 2000s

ln (MR) = 
ln (MR) = 0.49
MR = 
MR = 1.63
Answer:
Fields and variables are proportional
Explanation:
To solve the problem we must first identify the Vector Intensity,
The intensity is given by:

We also know that the change given by the Intensity is always the square of the amplitude,
This is,

The intensity is <em>proportional</em> to the change exerted on 
That is to say that in turn the amplitus is <em>proportional</em> to the Intensity.
On the other hand, relating the two variables we have


In this way we can conclude that the electric field of intensity is also <em>proportional</em> to 
You can look at magnesium, it can react with oxygen to form oxides. (chemical) it is malleable and a solid at room temperature. (physical)
to measure its density, the mass and volume can be worked out and from this density too. look up the equation, it is quite easy :)
physical changes -- it can be melted, and oxidized <span />
The efficiency of a machine indicates how well its input energy is converted to useful output energy or work. It is a major factor in the usefulness of a machine and is the fraction or percentage of the output divided by the input.
According to the Law of Conservation of Energy, the total output energy or work must equal the total input energy. However, some of the input energy does not contribute to the output work and is lost to such things as friction and heat.
Examples of machine efficiency include a lever, automobile, and perpetual motion machine.