Answer:

Explanation:
a. The wire's length is 10m long and has a mass 100g and a tension of 250N.
Frequency is given by the equation:
#where t=250N*10=2500N, 
#substitute for actual values for the lowest frequency.
#n=1, lowest frequency
Hence, the lowest frequency for standing waves is 7.9057Hz
b.The wire's length is 10m long and has a mass 100g and a tension of 250N.
Frequency is given by the equation:
#where t=250N*10=2500N,
#The second lowest frequency happens at
:

Hence, the second lowest frequency is 15.8114Hz
c.Given that the wire's length is 10m long and has a mass 100g and a tension of 250N.
Frequency is given by the equation:
#where t=250N*10=2500N,
The third lowest frequency happens at 

Hence, the third lowest frequency is 23.7171Hz