125 b
simultaneous kinematic equations two variables are F and stopping distance
Answer:
The magnitude of the magnetic force acting on the wire is zero, because the magnetic field is parallel to the wire.
In fact, the magnetic force exerted by the magnetic field on the wire is
where I is the current in the wire, L the length of the wire, B the magnetic field intensity and the angle between the direction of B and the wire. In our problem, B and the wire are parallel, so the angle is and so , therefore the magnetic force is zero: F=0.
Answer:
The answer is choice A.
Explanation:
Assuming you are in a situation with a gravitational field. You can divide the motion of the bullet into two components. One horizontal and the other in the vertical.
Answer:
F₂ = -7.3 N
Explanation:
Given that,
The mass of an object, m₁ = 3.7 kg
First force, F₁ = 11 N
The net acceleration of the object is 1 m/s².
We know that,
F₁+F₂ = ma
11+F₂ = (3.7)(1)
F₂ = 3.7-11
F₂ = -7.3 N
so, the other force is 7.3 N and it is acting in west direction.