<em>Here</em> as the <em>Pentagon</em> is <em>regular</em> so it's <em>all sides</em> will be of <em>equal length</em> . And if we assume It's each side be<em> </em><em><u>s</u></em> , then it's perimeter is going to be <em>(s+s+s+s+s) = </em><em><u>5s</u></em>.And as here , each <em>side</em> is increased by <em>8 inches</em> and then it's perimeter is <em>65 inches</em> , so we got that it's side after increament is<em> (s+8) inches</em> and original length is <em>s inches </em>. And if it's each side is <em>(s+8) inches</em> , so it's perimeter will be <em>5(s+8)</em> and as it's equal to <em>65 inches</em> . So , <em><u>5(s+8) = 65</u></em>


As we assumed the original side to be <em><u>s</u></em> .
<em>Hence, the original side's length 5 inches </em>
<span>2m^2-m^2(7-m)+6m^2
= 2m^2 - 7m^2 + m^3 + 6m^2
= m^3 + m^2</span>
You can solve this problem and calculate the arc lenght, by applying the following formula:
s=θr
s: it is the arc lenght.
θ: it is the central angle (θ=2π/3).
r: it is the radius of the circle (r=10 inches).
When you substitute these values into the formula, you obtain the arc lenght (s):
s=θr
s=(2π/3)(10)
Then, you have that the value of the arc lenght is:
s=20.94 inches
<span>1284720 is the answer to the first one
</span>
<span>267120 is the answer to the second one</span>