Answer: AC
Step-by-step explanation: Hope this helps
Answer:
<h2> </h2><h2>

</h2>
Step-by-step explanation:
<h3><em><u>Question</u></em><em><u>:</u></em><em><u>-</u></em></h3>
- To find the Binomial theorem form of
<h3><em><u>As</u></em><em><u> </u></em><em><u>we</u></em><em><u> </u></em><em><u>know</u></em><em><u>:</u></em><em><u>-</u></em></h3>
<em>As</em><em> </em><em>in</em><em> </em><em>Bin</em><em>omial</em><em> </em><em>theorem</em><em> </em><em>:</em><em>-</em>
<h3><em><u>Solution</u></em><em><u> </u></em><em><u>:</u></em><em><u>-</u></em></h3>

- <em>Hence</em><em>,</em><em> </em><em>on</em><em> </em><em>using</em><em> </em><em>the</em><em> </em><em>Binomial</em><em> </em><em>theorem</em><em>,</em><em> </em>

- <em>On</em><em> </em><em>formatting</em><em> </em>

- <em>On</em><em> </em><em>further</em><em> </em><em>formatting</em><em>.</em><em> </em>

<em><u>Hence</u></em><em><u>,</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>required</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>:</u></em><em><u>-</u></em>

Answer:
hi
Step-by-step explanation:
Answer:- AAS postulate
Explanation:-
- AAS postulate tells that if two angles and a non-included side of a triangle to equal to the two angles and a non-included side of another triangle then the two triangles are said to be congruent.
Given:- One angle and one side of a triangle is equal to the one angle and one side of the other triangle.
We see there is one more pair of equal angles as they are vertically opposite angles . [See the attachment]
⇒ there is a triangle where two angles and a non-included side of a triangle to equal to the two angles and a non-included side of another triangle then the two triangles are said to be congruent.
⇒ The triangles are congruent [ by ASA postulate]
Answer:
A
C
D
Step-by-step explanation: