Answer : The molar mass of the unknown gas will be 79.7 g/mol
Explanation : To solve this question we can use graham's law;
Now we can use nitrogen as the gas number 2, which travels faster than gas 1;
So, 167 / 99 = 1.687 So the nitrogen gas is 1.687 times faster that the unknown gas 1
We can compare the rates of both the gases;
So here, Rate of gas 2 / Rate of gas 1 =
Now, 1.687 = square root [
]
When we square both the sides we get;
2.845 = (molar mass 1) / (28.01 g/mol N2)
On rearranging, we get,
2.845 X (28.01 g/mol N2) = Molar mass 1
So the molar mass of unknown gas will be = 79.7 g/mol
Answer:
Conservation of Charge is the principle that the total electric charge in an isolated system never changes. The net quantity of electric charge, the amount of positive charge minus the amount of negative charge in the universe, is always conserved.
<em>Five household items that </em><em>contain</em><em> the same chemicals as cigarettes :</em><em>-</em>
- <em>Perfume</em>
- <em>Household</em><em> </em><em>cleaning</em><em> </em><em>products</em>
- <em>Beauty</em><em> </em><em>Products</em>
- <em>Sunscreen</em>
- <em>Water</em><em> </em><em>bottles</em>
<em>They</em><em> </em><em>contain</em><em> </em><em>toxic</em><em> </em><em>substances</em><em>!</em>
<em>hope</em><em> </em><em>it</em><em> </em><em>helps</em><em>!</em>
I'm pretty sure that significant figures is just the amount of numbers there is. So, in this case I think the answer would be D. 5
Answer:
3.2L
Explanation:
PV=nRT
since pressure and temperature are held constant we have V=nR
R is a constant also,
Thus; 
v1=1.5L , n1=3mol, n2=1.4mol

v2=
v2=3.2L