Answer:
Yes
Explanation:
When an object has more mass it takes more gravity to keep it down therefore producing friction which in return reduces the amount of kinetic energy created. A change in an object's speed has an greater effect on its kinetic energy. than a change in its mass has, because kinetic energy is proportional to.
Answer:
The speed is
and the direction is heading north.
Explanation:
In collisions the force exerted by the objects that collide is higher enough than the external forces that we can neglect that external forces, with that assumption we can use the conservation fo momentum law that states, final total momentum (pf) is equal initial total momentum (pi) if there’re not external forces or they are small enough to be neglected. Mathematically:

The total momentum is the sum of the momentum of each of the bodies we're dealing, in our case the moment of each car, then:

with pn the momentum of the 1000kg car heading north and ps the 800kg car heading south. Momentum is defined as mass times velocity, then:
(1)
It's important to note that when we talk about momentum and velocity direction matters, so we're are going to choose a system of reference where quantities pointing north are positive and pointing south are negative. So, the initial velocity of 1000 kg car is vni=5 m/s, initial velocity of 800 kg car is vsi=-4 m/s and the final velocity of 1000 kg car is vnf=-1 m/s. Now we can solve (1) for vsf and use the values we already have:

Because the sign is positive the direction is to heading north.
Answer:
(a). The time is 26.67 sec.
(b). The distance traveled during this period is 1066.9 m.
Explanation:
Given that,
Speed = 80 m/s
Acceleration = 3 m/s
Initial velocity = 0
(a). We need to calculate the time
Using equation of motion


Put the value into the formula


The time is 26.67 sec.
(b). We need to calculate the distance traveled during this period
Using equation of motion



The distance traveled during this period is 1066.9 m.
Hence, This is the required solution.
Answer:
6.71×10⁻⁷ m
Explanation:
Using thin film constructive interference formula as:
<u>2×n×t = m×λ</u>
Where,
n is the refractive index of the refracted surface
t is the thickness of the surface
λ is the wavelength
If m =1
Then,
2×n×t = λ
Given that refractive index pf the oil is 1.22
Thickness of the oil = 275 nm
Also, 1 nm = 10⁻⁹ m
Thickness = 275×10⁻⁹ m
So,
Wavelength is :
<u>λ= 2×n×t = 2× 1.22 × 275×10⁻⁹ m = 6.71×10⁻⁷ m</u>
Answer:
Explanation:
a ) The velocity will never be zero . The velocity will be minimum at the highest point of projectile, which will be equal to the horizontal component of the initial velocity.
b ) The velocity will be minimum when its kinetic energy will be minimum . Kinetic energy will be minimum when its potential energy will be maximum.
Its potential energy will be maximum at the highest point so velocity will be minimum at the highest point.
c ) Velocity will never be the same as initial velocity because constant force of gravitation is acting on the projectile all the time.
d ) At the moment when the projectile returns back and hits the ground, the speed becomes equal to the initial speed ( at t = 0 ) because its kinetic energy becomes the same as initial energy , the height becoming zero.