Answer:
La deformación unitaria lineal experimentada por la barra es
.
Explanation:
De la Mecánica de Materiales sabemos que la deformación unitaria lineal es la razón de la variación de la longitud con respecto a su longitud inicial. Al asumirse que la variación longitudinal es muy pequeña con respecto a la longitud inicial, se puede utilizar la siguiente ecuación:
(Eq. 1)
Donde:
- Deformación unitaria, adimensional.
- Cambio longitudinal, medido en metros.
- Longitud inicial, medida en metros.
Si conocemos que
y
, entonces la deformación unitaria lineal es:


La deformación unitaria lineal experimentada por la barra es
.
Answer:
g' = 13.5 m/s²
Explanation:
The acceleration due to gravity on surface of earth is given by the formula:
g = GMe/Re² --------------- euation 1
where,
g = acceleration due to gravity on surface of earth
G = Universal Gravitational Constant
Me = Mass of Earth
Re = Radius of Earth
Now, the the acceleration due to gravity on the surface of Kepler-62e is:
g' = GM'/R'² --------------- euation 1
where,
g' = acceleration due to gravity on surface of Kepler-62e
G = Universal Gravitational Constant
M' = Mass of Kepler-62e = 3.57 Me
R' = Radius of Kepler-62e = 1.61 Re
Therefore,
g' = G(3.57 Me)/(1.61 Re)²
g' = 1.38 GMe/Re²
using equation 1:
g' = 1.38 g
where,
g = 9.8 m/s²
Therefore,
g' = 1.38(9.8 m/s²)
<u>g' = 13.5 m/s²</u>
Answer: Option(d) is the correct option
Explanation:
Grashof number (Gr) is the ratio that is between buoyant force to viscous force persist on fluid on layer of velocity boundary.It is in dimensionless form.
According to the question ,
Laminar flow has
< (Gr) <
as range of boundary layer for free convection.
For transition to take place into turbulent form, it has range of
in terms of free convection.
So, if Grashof number (Gr) is increased then it might tend to change flow from laminar form into turbulent form for free convection.
Other options are incorrect because increasing in Grashof number does not always change the flow mechanism from laminar to turbulent or vice versa neither may cause to laminar flow. Therefore, the correct option is option(d).
Albert Einstein came up with the theory of general relativity to explain the law of gravity, whilst Newton's three laws of gravity is universal. To understand this further, it's best to understand it in scientific terms.
The weird thing about science is that words that are used in a colloquial sense may have a completely opposite definition in scientific terms.
A law in science is a constant and invariable statement that is universal. Wherever you may be in the universe, Newton's three laws of gravity will always be applied.
The word "theory" doesn't imply conjecture or an idea someone made up after a night of drinking. In science, a theory is the highest level of certainty behind mathematical proof -- which isn't even a part of science, obviously. A theory has to be substantiated by all available evidence and contradicted by none. All theories also have to have to be falsifiable. For this reason, theories can never be proven. Einstein's theory of general relativity has great predictive power, but in some cases, the predictions aren't always constant. Theories are often revised to fit new available evidence.