Answer:
Two identical spheres are released from a device at time t = 0 from the same ... Sphere A has no initial velocity and falls straight down. ... (b) On the axes below, sketch and label a graph of the horizontal component of the velocity of sphere A and of sphere B as a function of time. ... Which ball has the greater vertical velocity
Explanation:
Answer:
a) The x coordinate of the third mass is -1.562 meters.
b) The y coordinate of the third mass is -0.944 meters.
Explanation:
The center of mass of a system of particles (
), measured in meters, is defined by this weighted average:
(1)
Where:
- Mass of the i-th particle, measured in kilograms.
- Location of the i-th particle with respect to origin, measured in meters.
If we know that
,
,
,
,
and
, then the coordinates of the third particle are:




a) The x coordinate of the third mass is -1.562 meters.
b) The y coordinate of the third mass is -0.944 meters.
Answer:
Specific gravity can be used to determine if an object will sink or float on water. ... If an object or liquid has a specific gravity greater than one, it will sink. If the specific gravity of an object or a liquid is less than one, it will float.
hope this helps, have a great day/night, and stay safe!
Answer: 0.4 m
Explanation:
Given
Speed of ambulance, vs = 61.9 m/s
Speed of car = 28.5 m/s
Frequency of ambulance siren, f = 694 Hz
Velocity of sound in air, v = 343 m/s
With speed of ambulance being (61.9 m/s) -> We solve using
fd = f(v + vr) / (v - vs), where vr = 0
fd = 694 * (343 + 0) / (343 - 61.9)
fd = 694 * (343 / 281.1)
fd = 694 * 1.22
fd = 847 Hz
Recall,
λ = v/f
λ = 343/847
λ = 0.4 m
Therefore, the wavelength of the sound of the ambulance’s siren if you are standing at the position of the car is 0.4 m