<span> first, write the equation of the parabola in the required form: </span>
<span>(y - k) = a·(x - h)² </span>
<span>Here, (h, k) is given as (-1, -16). </span>
<span>So you have: </span>
<span>(y + 16) = a · (x + 1)² </span>
<span>Unfortunately, a is not given. However, you do know one additional point on the parabola: (0, -15): </span>
<span>-15 + 16 = a· (0 + 1)² </span>
<span>.·. a = 1 </span>
<span>.·. the equation of the parabola in vertex form is </span>
<span>y + 16 = (x + 1)² </span>
<span>The x-intercepts are the values of x that make y = 0. So, let y = 0: </span>
<span>0 + 16 = (x + 1)² </span>
<span>16 = (x + 1)² </span>
<span>We are trying to solve for x, so take the square root of both sides - but be CAREFUL! </span>
<span>± 4 = x + 1 ...... remember both the positive and negative roots of 16...... </span>
<span>Solving for x: </span>
<span>x = -1 + 4, x = -1 - 4 </span>
<span>x = 3, x = -5. </span>
<span>Or, if you prefer, (3, 0), (-5, 0). </span>
Given that the probability <span>is
modeled by the function
![y=3(257,959)^x[tex] where x is the impurity concentration and y, given as a percent, is the probability of the fuse malfunctioning.\\Then, the probability of the fuse malfunctioning for an impurity concentration of 0.17 is given by [tex]y=3(257,959)^{0.17}=3(8.316941)=24.95](https://tex.z-dn.net/?f=y%3D3%28257%2C959%29%5Ex%5Btex%5D%20%20where%20x%20is%20the%20impurity%20%0Aconcentration%20and%20y%2C%20given%20as%20a%20percent%2C%20is%20the%20probability%20of%20the%20fuse%20%0Amalfunctioning.%5C%5CThen%2C%20the%20%3C%2Fspan%3Eprobability%20of%20the%20fuse%20malfunctioning%20for%20an%20impurity%20concentration%20of%200.17%20is%20given%20by%20%5Btex%5Dy%3D3%28257%2C959%29%5E%7B0.17%7D%3D3%288.316941%29%3D24.95)
Therefore, the <span>probability of the fuse malfunctioning for an impurity concentration of 0.17 is 25% to the nearest percent.</span>
</span>
A, C, and D... a polygon simply has all rigid corners and flat edges
Answer:
100
Step-by-step explanation: