<span>Exactly 4(4 - 2*2^(1/3) + 2^(2/3)) feet,
or approximately 12.27023581 feet.
Let's first create an equation to calculate the relative intensity of the light based upon the distance D from the brighter light source. The distance from the dimmer light source will of course be (20-D). So the equation will be:
B = 4/D^2 + 1/(20-D)^2
The minimum and maximum can only occur at those points where the slope of the equation is 0. And you can determine the slope by using the first derivative. So let's calculate the first derivative.
B = 4/D^2 + 1/(20-D)^2
B' = d/dD [ 4/D^2 + 1/(20-D)^2 ]
B' = 4 * d/dD [ 1/D^2 ] + d/dD [ 1/(20-D)^2 ]
B' = 4(-2)D^(-3) + (-2)(20 - D)^(-3) * d/dD [ 20-D ]
B' = -8/D^3 - 2( d/dD [ 20 ] - d/dD [ D ] )/(20 - D)^3
B' = -8/D^3 - 2(0 - 1)/(20 - D)^3
B' = 2/(20 - D)^3 - 8/D^3
Now let's find a zero.
B' = 2/(20 - D)^3 - 8/D^3
0 = 2/(20 - D)^3 - 8/D^3
0 = 2D^3/(D^3(20 - D)^3) - 8(20 - D)^3/(D^3(20 - D)^3)
0 = (2D^3 - 8(20 - D)^3)/(D^3(20 - D)^3)
0 = 2D^3 - 8(20 - D)^3
8(20 - D)^3 = 2D^3
4(20 - D)^3 = D^3
4(8000 - 1200D + 60D^2 - D^3) = D^3
32000 - 4800D + 240D^2 - 4D^3 = D^3
32000 - 4800D + 240D^2 - 5D^3 = 0
6400 - 960D + 48D^2 - D^3 = 0
-6400 + 960D - 48D^2 + D^3 = 0
D^3 - 48D^2 + 960D - 6400 = 0
We now have a simple cubic equation that we can use the cubic formulas to solve.
Q = (3*960 - (-48)^2)/9 = 64
R = (9*(-48)*960 - 27*(-6400) - 2*(-48)^3)/54 = -384
D = Q^3 + R^2 = 64^3 + (-384)^2 = 409600
Since the value D is positive, there are 2 imaginary and 1 real root. We're only interested in the real root.
S = cbrt(-384 + sqrt(409600))
S = cbrt(-384 + 640)
S = cbrt(256)
S = 4cbrt(4)
T = cbrt(-384 - sqrt(409600))
T = cbrt(-384 - 640)
T = cbrt(-1024)
T = -8cbrt(2)
The root will be 4cbrt(4) - 8cbrt(2) + 48/3
So simplify
4cbrt(4) - 8cbrt(2) + 48/3
=4cbrt(4) - 8cbrt(2) + 16
=4(cbrt(4) - 2cbrt(2) + 4)
= 4(4 - 2*2^(1/3) + 2^(2/3))
Which is approximately 12.27023581
This result surprises me. I would expect the minimum to happen where the intensity of both light sources match which would be at a distance of 2/3 * 20 = 13.3333 from the brighter light source. Let's verify the calculated value.
Using the brightness equation at the top we have:
B = 4/D^2 + 1/(20-D)^2
Using the calculated value of 12.27023581, we get
B = 4/D^2 + 1/(20-D)^2
B = 4/12.27023581^2 + 1/(20-12.27023581)^2
B = 4/12.27023581^2 + 1/7.72976419^2
B = 4/150.5586868 + 1/59.74925443
B = 0.026567713 + 0.016736611
B = 0.043304324
And the intuition value of 13.33333333
B = 4/D^2 + 1/(20-D)^2
B = 4/13.33333333^2 + 1/(20-13.33333333)^2
B = 4/13.33333333^2 + 1/6.666666667^2
B = 4/177.7777778 + 1/44.44444444
B = 0.0225 +0.0225
B = 0.045
And the calculated value is dimmer. So intuition wasn't correct.
So the object should be placed 4(4 - 2*2^(1/3) + 2^(2/3)) feet from the stronger light source, or approximately 12.27023581 feet.</span>
Answer:
She overcame her disabilities to compete in the 1956 Summer Olympic Games, and in 1960, she became the first American woman to win three gold medals in track and field at a single Olympics. Later in life, she formed the Wilma Rudolph Foundation to promote amateur athletics.
Explanation:
Answer : Option B) Energy from the environment fuels production.
Explanation : Environmental fuels can be produced from lands and contribute towards production. The land can contribute for the production of a Biogas plant and help in generating energy from the plant. It uses mainly decaying matter and household wastes which are decomposed and then produce methane gas is then connected to the household kitchens.
.............................