I uploaded the answer to a file hosting. Here's link:
bit.
ly/3a8Nt8n
Answer:
n = 7.86 mol
Explanation:
This question can be solved using the ideal gas law of PV = nRT.
Temperature must be in K, so we will convert 22.5C to 295 K ( Kelvin = C + 273).
R is the ideal gas constant of 0.0821.
(2.24atm)(85.0L) = n(0.0821)(295K)
Isolate n to get:
n = (2.24atm)(85.0L)/(0.0821)(295K)
n = 7.86 mol
Answer:
The time taken for the cross mark to disappear decreases steadily down the column.
Explanation:
Now if we look at the data provided, we will discover that the volume of the HCl was held constant while the volume of the thiosulphate was increased steadily and the volume of water decreased steadily.
Recall that a system is more concentrated when it contains less volume of water and more volume of reactants. Hence as the volume of water in the system is being reduced, the concentration of reactants is increased.
It has been established that an increase in the concentration of reactants lead to an increase in the rate of reaction. The disappearance of the cross shows the completion of the reaction between HCl and thiosulphate. The faster or slower the cross disappears, the faster or slower the rate of reaction.
Since increase in concentration of reactants increases the rate of reaction, it is observed that as the volume of the thiosulphate increases (reactant concentration increases) the cross disappears faster (rate of reactant increases). Hence as the volume of thiosulphate increases, it takes a shorter time for the cross to disappear. This implies that the time column in the table (refer to the question) will decrease steadily as the volume of thiosulphate increases.
Answer:
D: electrones are delocalized
Complete Question
To make use of an ionic hydrate for storing solar energy, you place 422.0 kg of sodium sulfate decahydrate on your house roof. Assuming complete reaction and 100% efficiency of heat transfer, how much heat (in kJ) is released to your house at night? Note that sodium sulfate decahydrate will transfer 354 kJ/mol.
Answer:
The amount of energy released is 
Explanation:
Number of moles is mathematically represented as

substituting
for mass of sodium sulfate decahydrate(
),
(This value is a constant )for the molar mass of sodium sulfate decahydrate


From the question we are told that
1 mole of sodium sulfate decahydrate generates
of energy
So 1309.7 mole would generate x
Now stating the relation mathematically
1 mol → 354KJ
1309.7 mol → x
=> 