The balanced chemical equation would be as follows:
<span>NaCl + AgNO3 -> NaNO3 + AgCl
We are given the amounts of the reactants. We need to determine first which one is the limiting reactant. We do as follows:
0.0440 mol/L NaCl (.025 L) = 0.0011 mol NaCl -----> consumed completely and therefore the limiting reactant
0.320 mol/L AgNO3 (0.025 L) = 0.008 mol AgNO3
0.0011 mol NaCl ( 1 mol AgCl / 1 mol NaCl) = 0.0011 AgCl precipitate produced
</span>
Chromatography separates things according to their weight.
The ability to roll your tongue is determined by the dominant gene.
Answer:
17.65 grams of O2 are needed for a complete reaction.
Explanation:
You know the reaction:
4 NH₃ + 5 O₂ --------> 4 NO + 6 H₂O
First you must know the mass that reacts by stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction). For that you must first know the reacting mass of each compound. You know the values of the atomic mass of each element that form the compounds:
- N: 14 g/mol
- H: 1 g/mol
- O: 16 g/mol
So, the molar mass of the compounds in the reaction is:
- NH₃: 14 g/mol + 3*1 g/mol= 17 g/mol
- O₂: 2*16 g/mol= 32 g/mol
- NO: 14 g/mol + 16 g/mol= 30 g/mol
- H₂O: 2*1 g/mol + 16 g/mol= 18 g/mol
By stoichiometry, they react and occur in moles:
- NH₃: 4 moles
- O₂: 5 moles
- NO: 4 moles
- H₂O: 6 moles
Then in mass, by stoichiomatry they react and occur:
- NH₃: 4 moles*17 g/mol= 68 g
- O₂: 5 moles*32 g/mol= 160 g
- NO: 4 moles*30 g/mol= 120 g
- H₂O: 6 moles*18 g/mol= 108 g
Now to calculate the necessary mass of O₂ for a complete reaction, the rule of three is applied as follows: if by stoichiometry 68 g of NH₃ react with 160 g of O₂, 7.5 g of NH₃ with how many grams of O₂ will it react?

mass of O₂≅17.65 g
<u><em>17.65 grams of O2 are needed for a complete reaction.</em></u>
The law of conservation of mass states that the mass of a system must remain constant everytime, it can neither be created or destroyed. This means the number of atoms of each element on reactant side must equal the number of atoms of each element on product side.
First we figure out the chemical formula for each compound by taking advantage of oxidation states which are able to tell us whether an element will lose or gain an electron
Strontium hydroxide?
Sr is an alkaline earth metal which has 2 valence electrons that when both are lost it has an oxidation state of +2. Since we know the hydroxide ion has a charge of -1,
, Then two
are needed to form compound, hence we have 
zirconium (I) perchlorate?
The oxidation state of zirconium is +1 since it is stated that we have zirconium(I). Converserly, perchlorate has a -1 charge which further proves that zirconium has a +1 oxidation state
The product would have a strontium diperchlorate because we know from earlier that Sr has a +2 oxidation state, and we would also have ZrOH because Zr has a +1 oxidation state and
has a -1 charge
The unbalanced equation with all chemicals formulas would be

Using the law of conservation of mass, it is clear that there is 1 molecule of
on reactant side as compared to 2 molecules of
on product side. On the other hand, the are 2 molecules of
on reactant side and 1 molecule of
on product side. To balance we add a coefficient of 2 on
and a coefficient of 2 on ZrOH,
.