Water's high heat capacity<span> is a property caused by hydrogen bonding among </span>water<span> molecules. When </span>heat<span> is absorbed, hydrogen bonds are broken and </span>water <span>molecules </span>can<span> move freely. When the temperature of </span>water decreases, the hydrogen bonds are formed and release a considerable amount of energy.
<span>Water's heat of vaporization is around 540 cal/g at </span>100 °C<span>, water's boiling point.
</span>
16.4 grams is the mass of solute in a 500 mL solution of 0.200 M
.
sodium phosphate
Explanation:
Given data about sodium phosphate
atomic mass of Na3PO4 = 164 grams/mole
volume of the solution = 500 ml or 0.5 litres
molarity of sodium phosphate solution = 0.200 M
The formula for molarity will be used here to know the mass dissolved in the given volume of the solution:
The formula is
molarity = 
putting the values in the equation, we get
molarity x volume = number of moles
0.200 X 0.5= number of moles
number of moles = 0.1 moles
Atomic mass x number of moles = mass
putting the values in the above equation
164 x 0.1 = 16.4 grams
16.4 grams of sodium phosphate is present in 0.5 L of the solution to make a 0.2 M solution.
B. Rotten orange is the correct answer. Hope this helps!
Answer:
There are 0.5 mole in 20g of argon.
Explanation:
40 g of argon = 1mole
Then 20g of argon is,
→ 1/40 × 20
→ 0.5 mole
Info: NACl2<span> might be an improperly capitalized: </span>NaCl2<span>. Balanced equation: NA + Cl2 = </span>NACl<span>2. </span>Reaction type<span>: synthesis. Please tell about this free chemistry ...</span>