Answer:
The average velocity is 40km/h.
Explanation:
The average velocity is
, where
is the distance traveled and
the time elapsed.
The distance traveled is clearly 80km since it's all done in the same direction, we only need to know the time elapsed. For this we calculate the time elapsed on the first part, and add it to the time elapsed on the second part using always the formula
, where v is the velocity on each part, which is constant.
The time elapsed for the first part is
, and the time elapsed for the second part is
, giving us a total time of
=2h.
Finally, we can calculate the average velocity:
.
Answer:
a = 5 [m/s²]
Explanation:
To solve this problem we must use the following equation of kinematics.

where:
Vf = final velocity = 20 [m/s]
Vo = initial velocity = 10 [m/s]
t = time = 2 [s]
a = acceleration [m/s²]
Now replacing:
![20 =10 +a*2\\10=2*a\\a=5[m/s^{2} ]](https://tex.z-dn.net/?f=20%20%3D10%20%2Ba%2A2%5C%5C10%3D2%2Aa%5C%5Ca%3D5%5Bm%2Fs%5E%7B2%7D%20%5D)
The difference between the frequencies of the piano key and the tuning fork gives the frequency of the beats.
When the tuning fork is 405 Hz, and no beats are heard, then the piano key is also 405 Hz.
When the piano key is 405 Hz and the tuning fork is 402 Hz, then 405 - 402 = 3 beats are heard.
The piano key is 405 Hz.
Answer:
If gravity on Earth is increased, this gravitational tugging would have influenced the moon's rotation rate. If it was spinning more than once per orbit, Earth would pull at a slight angle against the moon's direction of rotation, slowing its spin. If the moon was spinning less than once per orbit, Earth would have pulled the other way, speeding its rotation.
Answer:
A. 7.1m
B. 3.55m/s
C. 1.775m/s^2
Explanation:
First step is to identify given parameters;
Ball 1: m₁ = 0.5kg, u (initial velocity) =0, t = 2seconds
Ball 2: m₂ = 0.25kg, u = 15m/s, t = 2seconds
<u>Second step:</u> we determine the y-coordinate of ball 1 after 2 seconds, using the equation of motion under gravity as shown below;



Recall, that the ball was thrown from a height of 25m, total y-coordinate of ball 1 after 2 seconds becomes 25m +(-19.6m)
[tex]y_{1} = 5.4m[/tex]
<u>Third step</u>: we determine the y-coordinate of ball 2 after 2 seconds


<u>Fourth step: </u>we determine the y-component of the center mass of the two balls


y = 7.1m
<u>Fifth step:</u> we solve B part of the question; velocity of the center mass of the two balls


velocity = 3.55m/s
<u>Sixth step:</u> we solve C part of the question; acceleration of the center mass of the two balls


acceleration = 1.775 m/s^2