Answer:
a) A = 3 cm, b) T = 0.4 s, f = 2.5 Hz,
2) A standing wave the displacement of the wave is canceled and only one oscillation remains
Explanation:
a) in an oscillatory movement the amplitude is the highest value of the signal in this case
A = 3 cm
b) the period of oscillation is the time it takes for the wave to repeat itself in this case
T = 0.4 s
the period is the inverse of the frequency
f = 1 /T
f = 1 /, 0.4
f = 2.5 Hz
2) a traveling wave is a wave for which as time increases the displacement increases, in the case of a transverse wave the oscillation is perpendicular to the displacement and in the case of a longitudinal wave the oscillation is in the same direction of the displacement.
A standing wave occurs when a traveling wave bounces off some object and there are two waves, one that travels in one direction and the other that travels in the opposite direction. In this case, the displacement of the wave is canceled and only one oscillation remains.
Answer:
different sample have different properties is not a characteristics of a compound ,
Explanation:
because compound will always same properties no matter how quantity is
Answer: FR=2.330kN
Explanation:
Write down x and y components.
Fx= FSin30°
Fy= FCos30°
Choose the forces acting up and right as positive.
∑(FR) =∑(Fx )
(FR) x= 5-Fsin30°= 5-0.5F
(FR) y= Fcos30°-4= 0.8660-F
Use Pythagoras theorem
F2R= √F2-11.93F+41
Differentiate both sides
2FRdFR/dF= 2F- 11.93
Set dFR/dF to 0
2F= 11.93
F= 5.964kN
Substitute value back into FR
FR= √F2(F square) - 11.93F + 41
FR=√(5.964)(5.964)-11.93(5.964)+41
FR= 2.330kN
The minimum force is 2.330kN
Answer:
a. an increase in the mass on the spring.
Explanation:
T = 2π/ω = 2π/√(k/m) = 2π√(m/k)
2π is a constant
as m is in the numerator, increasing mass will increase the period.