Answer:
<em>v = 381 m/s</em>
Explanation:
<u>Linear Speed</u>
The linear speed of the bullet is calculated by the formula:

Where:
x = Distance traveled
t = Time needed to travel x
We are given the distance the bullet travels x=61 cm = 0.61 m. We need to determine the time the bullet took to make the holes between the two disks.
The formula for the angular speed of a rotating object is:

Where θ is the angular displacement and t is the time. Solving for t:

The angular displacement is θ=14°. Converting to radians:

The angular speed is w=1436 rev/min. Converting to rad/s:

Thus the time is:

t = 0.0016 s
Thus the speed of the bullet is:

v = 381 m/s
1. Volume of the solution (B)
2. Celery (D)
3. Hydroxide ions in solution (A)
Answer:
V initial = 29.4 m.s²
Explanation:
( Using the laws of motion)
V final = V initial + Acceleration × time
0 = V initial + ( -9.8)(3)
29.4 = V initial
* I took upward as positive that's why I substituted -9.8 *
* for V final we know that at maximum height the ball is not moving thats why is = 0 *
Answer:
The answer is
<h2>2560 J</h2>
Explanation:
The kinetic energy of an object given it's mass and velocity can be found by using the formula

where
m is the mass
v is the velocity
From the question
m = 80 kg
v = 8 m/s
The kinetic energy is

We have the final answer as
<h3>2560 J</h3>
Hope this helps you