Food has calories which feeds your bones in your body from eating away your muscles, it doesn’t have “energy” on the other hand pop and drinks do.
Here light ray strikes to interface at an angle of 45 degree and then refracts into other medium such that it will bend towards boundary.
So here the angle of incidence will be less than the angle of refraction as light moves towards the boundary after refraction which mean it will bend away from the normal
here it can be said that medium 2 will be rarer then medium 1
So here the possible options are
1. Water
Air
2. Diamond
Air
So in above two options medium 1 is denser and medium 2 is rarer
Answer:
1keff=1k1+1k2
see further explanation
Explanation:for clarification
Show that the effective force constant of a series combination is given by 1keff=1k1+1k2. (Hint: For a given force, the total distance stretched by the equivalent single spring is the sum of the distances stretched by the springs in combination. Also, each spring must exert the same force. Do you see why?
From Hooke's law , we know that the force exerted on an elastic object is directly proportional to the extension provided that the elastic limit is not exceeded.
Now the spring is in series combination
F
e
F=ke
k=f/e.........*
where k is the force constant or the constant of proportionality
k=f/e
............................1
also for effective force constant
divide all through by extension
1) Total force is
Ft=F1+F2
Ft=k1e1+k2e2
F = k(e1+e2) 2)
Since force on the 2 springs is the same, so
k1e1=k2e2
e1=F/k1 and e2=F/k2,
and e1+e2=F/keq
Substituting e1 and e2, you get
1/keq=1/k1+1/k2
Hint: For a given force, the total distance stretched by the equivalent single spring is the sum of the distances stretched by the springs in combination.
When the temperature of 0.50 kg of water decreases by 22 °C, the energy transferred to the surroundings from the water is -46.2 kJ.
A sample of 0.50 kg of water boils (reaches 100 °C). After a while, its temperature decreases by 22 °C.
We can calculate the energy transferred to the surroundings from the water in the form of heat (Q) using the following expression.

where,
- c: specific heat capacity of water
- m: mass of water
- ΔT: change in the temperature
When the temperature of 0.50 kg of water decreases by 22 °C, the energy transferred to the surroundings from the water is -46.2 kJ.
Learn more: brainly.com/question/16104165
<span>Radius distance from origin to particle = √ (2²+1²) = √5 m = R
I = MR² = (0.200)(5) = 1.00 kg-m²
Θ = arctan 2/1 = 63.4° = R's angle CCW from horizontal
V = 3.0 m/s
V component that is at 90° to R = 3.0(sin 90°- 63.4°) = 3.0(sin 26.6°) = 1.3433 m/s
w = [V component / R] = 1.3433/√5 = 0.601 rad/s
size of angular momentum of particle relative to origin = Iw = (1.00)(0.601) = 0.601 kgm²/s</span><span>
i hope I'm right</span>