Answer:
The number of bright fringes per unit width on the screen is,
Explanation:
If d is the separation between slits, D is the distance between the slit and the screen and is the wavelength of the light. Let x is the number of bright fringes per unit width on the screen is given by :
is the wavelength
n is the order
If n = 1,
So, the the number of bright fringes per unit width on the screen is . Hence, the correct option is (B).
I'm a little confused by your question.
If you mean what is popular sovereignty, it is the belief that the governments is made and sustained by the consent of the people that it governs.
1- You should always have a question for your experiment.
2- You need to conduct background research. It helps to write down your sources so you can cite your references.
3- Propose a hypothesis (educated guess on what you believe the outcome of the experiment will be)
4- Design and perform an experiment to test your hypothesis (include independent and dependent variable)
5- Record observations and analyze what the data means.
6- Conclude whether you need to accept or reject your hypothesis, which accepting means your hypothesis was right and rejected is if it was wrong.
Answer: rp/re= me/mp= 544 * 10^-6.
Explanation: To calculate this problem we have to consider the circular movement by the electron and proton inside a magnetic field.
Then the dynamic equation for the circular movement is given by:
Fcentripetal= m*ω^2.r
q*v*B=m*ω^2.r
we write this for each particle then we have the following:
q*v*B=me* ω^2*re
q*v*B=mp* ω^2*rp
rp/re=me/mp=9.1*10^-31/1.67*10^-27=544*10^-6
Answer:
6.67×10¯⁹ A
Explanation:
From the question given above, the following data were obtained:
Quantity of electricity (Q) = 2 μC
Time (t) = 5 mins
Current (I) =?
Next, we shall convert 2 μC to C. This can be obtained as follow:
1 μC = 1×10¯⁶ C
Therefore,
2 μC = 2 μC × 1×10¯⁶ C / 1 μC
2 μC = 2×10¯⁶ C
Next, we shall convert 5 mins to seconds. This can be obtained as follow:
1 min = 60 secs
Therefore,
5 min = 5 min × 60 sec / 1 min
5 mins = 300 s
Finally, we shall determine the current in the circuit. This can be obtained as follow:
Quantity of electricity (Q) = 2×10¯⁶ C
Time (t) = 300 s
Current (I) =?
Q = It
2×10¯⁶ = I × 300
Divide both side by 300
I = 2×10¯⁶ / 300
I = 6.67×10¯⁹ A
Thus, the current in the circuit is 6.67×10¯⁹ A