Answer:
Electrical force, F = 90 N
Explanation:
It is given that,
Charge on sphere 1, 
Charge on sphere 2, 
Distance between two spheres, d = 6 cm = 0.06 m
Let F is the electrical force between them. It is given by the formula of electric force which is directly proportional to the product of charges and inversely proportional to the square of distance between them such that,


F = 90 N
So, the electrical force between them is 90 N. Hence, this is the required solution.
The refrigerator's coefficient of performance is 6.
The heat extracted from the cold reservoir Q cold (i.e., inside a refrigerator) divided by the work W required to remove the heat is known as the coefficient of performance, or COP, of a refrigerator (i.e., the work done by the compressor). The required inside temperature and the outside temperature have a significant impact on the COP.
As the inside temperature of the refrigerator decreases, its coefficient of performance decreases. The coefficient of performance (COP) of refrigeration is always more than 1.
The heat produced in the cold compartment, H = 780.0 J
Work done in ideal refrigerator, W = 130.0 J
Refrigerator's coefficient of performance = H/W
= 780/130
= 6
Therefore, the refrigerator's coefficient of performance is 6.
Energy conservation requires the exhaust heat to be = 780 + 130
= 910 J
Learn more about coefficient here:
brainly.com/question/18915846
#SPJ4
Answer:
Explanation:
The relation between time period of moon in the orbit around a planet can be given by the following relation .
T² = 4 π² R³ / GM
G is gravitational constant , M is mass of the planet , R is radius of the orbit and T is time period of the moon .
Substituting the values in the equation
(.3189 x 24 x 60 x 60 s)² = 4 x 3.14² x ( 9380 x 10³)³ / (6.67 x 10⁻¹¹ x M)
759.167 x 10⁶ = 8.25 x 10²⁰ x 39.43 / (6.67 x 10⁻¹¹ x M )
M = .06424 x 10²⁵
= 6.4 x 10²³ kg .