Answer:
2(Jill) - 20 + (Jill) = 205
3(Jill) = 225
(Jill) = 75
(Jack) = 2(75) - 20 => 150 - 20 = 130
Jill= 75
Jack= 130
Step-by-step explanation:
Answer:
i think it's c
Step-by-step explanation:
a. <u>2</u><u>/</u><u>1</u><u>00</u><u> </u><u>×</u><u> </u><u>1</u><u>5</u><u>0</u><u>=</u><u> </u><u>3</u><u>. </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u>b</u><u>. </u><u> </u><u>100×</u><u>4</u><u>0</u><u>0</u><u>=</u><u>4</u><u>0</u><u>0</u><u>0</u><u>0</u><u>. </u><u> </u><u> </u><u> </u><u> </u><u>c</u><u>. </u><u> </u><u> </u><u>6</u><u>/</u><u>100 </u><u>×</u><u>6</u><u>0</u><u>=</u><u> </u><u>1</u><u>.</u><u>2</u><u> </u><u>×</u><u>3</u><u>=</u><u>3</u><u>.</u><u>6</u><u>. </u><u> </u><u> </u><u> </u><u> </u><u> </u><u>d</u><u>. </u><u>6</u><u>9</u><u>×</u><u>5</u><u>0</u><u>=</u><u>3</u><u>4</u><u>0</u><u>0</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u>so </u><u>answer</u><u> </u><u>c</u><u>. </u><u> </u><u> </u><u> </u><u> </u><u> </u>
Answer: a) (176.76,172.24), b) 0.976.
Step-by-step explanation:
Since we have given that
Mean height = 174.5 cm
Standard deviation = 6.9 cm
n = 50
we need to find the 98% confidence interval.
So, z = 2.326
(a) Construct a 98% confidence interval for the mean height of all college students.

(b) What can we assert with 98% confidence about the possible size of our error if we estimate the mean height of all college students to be 174.5 centime- ters?
Error would be

Hence, a) (176.76,172.24), b) 0.976.
Step-by-step explanation:
The bike cost $199 to get $199 you do a number line then label 520 then at the end label 321 so then you do -20 then -100 then -50 then -20 then -9. so now you add them up 20+100+50+20+9 which equals =199
so bike cost $199
then 520%×199= 1034.8
or 520%×321=1669.2
so the percentage is 1669.2 or 1034.8 probably 1669.2 but they bot count.
Answer:
d. Two complex solutions
Step-by-step explanation:
We have been given a trinomial
and we are supposed to predict the type of solutions of our given trinomial.
We will use discriminant formula to solve for our given problem.
, where,
,
,

Conclusion from the result of Discriminant are:
Upon substituting our given values in above formula we will get,


Since our discriminant is less than zero, therefore, out given trinomial will have two complex solutions and option d is the correct choice.