Answer:
5 moles of NO₂ will remain after the reaction is complete
Explanation:
We state the reaction:
3NO₂(g) + H₂O(l) → 2HNO₃(l) + NO(g)
3 moles of nitric oxide can react with 1 mol of water. Ratio is 3:1, so we make this rule of three:
If 3 moles of nitric oxide need 1 mol of water to react
Then, 26 moles of NO₂ may need (26 .1) / 3 = 8.67 moles of H₂O
We have 7 moles of water but we need 8.67 moles, so water is the limiting reactant because we do not have enough. In conclusion, the oxide is the reagent in excess. We can verify:
1 mol of water needs 3 moles of oxide to react
Therefore, 7 moles of water will need (7 .3)/1 = 21 moles of oxide
We have 26 moles of NO₂ and we need 21, so we still have oxide after the reaction is complete. We will have (26-21) = 5 moles of oxide that remains
Answer:
Explanation:
Each coil increases it by a multiple of 100.
=> 50 | 3 | <u><em>15,000</em></u>
=> 100 | 3 | <u><em>30,000</em></u>
=> 150 | 3 | <u><em>45,000</em></u>
Temperature can change a reaction rate because adding or taking away heat means energy is being added or taken away. When energy is added, the particles speed up, so there is a greater chance of the reactants colliding to form the products, which increases the reaction rate. When energy is taken away, the particles more slower, so they don't collide as easily, which slows down the reaction rate.
Therefore, the answer is D.
Answer:
35.9%
Explanation:
The percent volume of the coffee solution can be calculated as follows:
% volume of coffee solution = volume of coffee/total volume of coffee solution × 100
According to this question, a cup of coffee has 71 mL of coffee and 127 mL of water. This means that, the total volume of coffee solution is;
71mL + 127mL = 198mL
% volume = 71/198 × 100
= 0.359 × 100
Percent volume of coffee solution = 35.9%
Answer:
Rate = 1.321M/s[H₂CO₃]¹ ; k = 1.32M/s
Explanation: