Answer:
55
Explanation:
if you sub and I am writing it simple
Answer:
27°C or 300K
Explanation
We were told that the pressureof the system decreased by 10 times implies that P2= P1/10
Where P2=final pressure
P1= initial pressure
Wew were also told that the volume of the system increased by 5 times this implies that V2= 5×V1
Where T2= final temperature =-123C= 273+(-123C)=150K
T1= initial temperature
But from gas law
PV=nRT
As n and R are constant
P1V1/T1 = P2V2/T2
T1= P1V1T2/P2V2
T1=2×T2
T1=2×150
T1=300K
=300-273
=27°C
the initial temperature (°C) of a system is 27°C
Answer: 2. Density
3. Physical Property
4. Chemical Change
5. states of matter
Explanation: Density is referred as mass per unit volume. Physical properties are observable characteristics of an object. An new formation of a substance in a chemical reaction is a chemical change. And solids, liquids, and gases are states of matter.
Answer:
The density of Ammonia : 6.25.10⁻⁴ g/cm³
Further explanation
Density is a quantity derived from the mass and volume
Density is the ratio of mass per unit volume
With the same mass, the volume of objects that have a high density will be smaller than objects with a smaller density
The unit of density can be expressed in g/cm³ or kg/m³
Density formula:
\large {\boxed {\bold {\rho ~ = ~ \frac {m} {V}}}}ρ = Vm
ρ = density
m = mass
v = volume
A common example is the water density of 1 gr/cm³
Ammonia has a density of 0.625 g/L, then convert to g/cm³ :
\begin{gathered}\rm 1~L=1~dm^3=10^3~cm^3\\\\0.625~\dfrac{g}{L}\times \dfrac{1~L}{10^3~cm^3}\\\\\rho=\dfrac{0.625}{10^3}}\dfrac{g}{cm^3}=\boxed{6.25.10^{-4}\dfrac{g}{cm^3}}\end{gathered}
Learn more
Inquiry; wanting to know. Thinking critically to figure out, understand. However being skeptic to not fall on one simple answer. For possibly, it could be incorrect.