1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga nikolaevna [1]
3 years ago
7

Derive the expression for the range of the ball as a function of its height. To do this you should use the following steps. In t

he first part of the motion, the ball undergoes vertical free fall until it hits the bounce plate. At this point, its final velocity in the y-direction becomes the initial velocity in the x-direction after hitting the plate. Now calculate the time it takes the ball to hit the ground after hitting the bounce plate. Lastly, find the distance that the ball will travel in the horizontal direction in this time. This is the range of the ball.
Physics
1 answer:
AVprozaik [17]3 years ago
4 0

Explanation:

Thanks for this....

its very helpful...

You might be interested in
Ball A was carried to the top of a hill in a straight line, while ball B was carried in a longer, zigzag path. At the top of the
marissa [1.9K]

Answer: equal

Explanation:

Don’t know why honestly

5 0
3 years ago
Read 2 more answers
Part complete How long must a simple pendulum be if it is to make exactly one swing per five seconds?
shtirl [24]

Answer:

L=6.21m

Explanation:

For the simple pendulum problem we need to remember that:

\frac{d^{2}\theta}{dt^{2}}+\frac{g}{L}sin(\theta)=0,

where \theta is the angular position, t is time, g is the gravity, and L is the length of the pendulum. We also need to remember that there is a relationship between the angular frequency and the length of the pendulum:

\omega^{2}=\frac{g}{L},

where \omega is the angular frequency.

There is also an equation that relates the oscillation period and the angular frequeny:

\omega=\frac{2\pi}{T},

where T is the oscillation period. Now, we can easily solve for L:

(\frac{2\pi}{T})^{2}=\frac{g}{L}\\\\L=g(\frac{T}{2\pi})^{2}\\\\L=9.8(\frac{5}{2\pi})^{2}\\\\L=6.21m

3 0
3 years ago
A student walks 31 m east, then 16 m west. Make east positive. What is their<br> displacement?
Marianna [84]
Displacement = 31 - 16 = +15 m
3 0
3 years ago
When friction slows a sliding block___
Svetradugi [14.3K]

Answer:

A

Explanation:

When friction slows a sliding block, <u>the kinetic energy of the block is transformed into internal energy .</u>

<em>The frictional movement of two surfaces over one another leads to the conversion of some of their kinetic energies to another energy - heat or thermal energy. Hence, the temperatures of the objects are raised in the process. </em>

<u>Therefore, when a sliding block is slowed down due to friction, some of the kinetic energy of the block would be transformed into internal energy in the form of heat.</u>

The correct option is A.

6 0
3 years ago
A loaded ore car has a mass of 950 kg. and rolls on rails ofnegligible friction. It starts from rest ans is pulled up a mineshaf
stiks02 [169]

(a) 10241 W

In this situation, the car is moving at constant speed: this means that its acceleration along the direction parallel to the slope is zero, and so the net force along this direction is also zero.

The equation of the forces along the parallel direction is:

F - mg sin \theta = 0

where

F is the force applied to pull the car

m = 950 kg is the mass of the car

g=9.8 m/s^2 is the acceleration of gravity

\theta=30.0^{\circ} is the angle of the incline

Solving for F,

F=mg sin \theta = (950)(9.8)(sin 30.0^{\circ})=4655 N

Now we know that the car is moving at constant velocity of

v = 2.20 m/s

So we can find the power done by the motor during the constant speed phase as

P=Fv = (4655)(2.20)=10241 W

(b) 10624 W

The maximum power is provided during the phase of acceleration, because during this phase the force applied is maximum. The acceleration of the car can be found with the equation

v=u+at

where

v = 2.20 m/s is the final velocity

a is the acceleration

u = 0 is the initial velocity

t = 12.0 s is the time

Solving for a,

a=\frac{v-u}{t}=\frac{2.20-0}{12.0}=0.183 m/s^2

So now the equation of the forces along the direction parallel to the incline is

F - mg sin \theta = ma

And solving for F, we find the maximum force applied by the motor:

F=ma+mgsin \theta =(950)(0.183)+(950)(9.8)(sin 30^{\circ})=4829 N

The maximum power will be applied when the velocity is maximum, v = 2.20 m/s, and so it is:

P=Fv=(4829)(2.20)=10624 W

(c) 5.82\cdot 10^6 J

Due to the law of conservation of energy, the total energy transferred out of the motor by work must be equal to the gravitational potential energy gained by the car.

The change in potential energy of the car is:

\Delta U = mg \Delta h

where

m = 950 kg is the mass

g=9.8 m/s^2 is the acceleration of gravity

\Delta h is the change in height, which is

\Delta h = L sin 30^{\circ}

where L = 1250 m is the total distance covered.

Substituting, we find the energy transferred:

\Delta U = mg L sin \theta = (950)(9.8)(1250)(sin 30^{\circ})=5.82\cdot 10^6 J

8 0
3 years ago
Other questions:
  • What conditions must be present for a translational and rotational equilibrium of a rigid body?
    15·1 answer
  • If the length of a pendulum is doubled what will be the change in its time period?
    8·2 answers
  • Explain why the term “nuke it” is incorrect when referring to cooking food
    9·1 answer
  • You have two identical capacitors and an external potential source.a) Compare the total energy stored in the capacitors when the
    8·1 answer
  • Consider a helium balloon with volume 2.1 L.
    12·1 answer
  • A SpaceX rocket launched from the Boca Chica space port must attain a speed of 10000 m/s during the first 6 minutes of flight. U
    8·1 answer
  • Explain why thermal and electrical conductivity is so high with copper.
    14·1 answer
  • A)Watt (W) is a derived unit.
    6·1 answer
  • As the frequency of a wave increases the wavelength.
    6·2 answers
  • For an object on a flat surface, the force of gravity is 15 newtons downward and the normal force is 15 newtons upward. The appl
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!