-- As she lands on the air mattress, her momentum is (m v)
Momentum = (60 kg) (5 m/s down) = 300 kg-m/s down
-- As she leaves it after the bounce,
Momentum = (60 kg) (1 m/s up) = 60 kg-m/s up
-- The impulse (change in momentum) is
Change = (60 kg-m/s up) - (300 kg-m/s down)
Magnitude of the change = <em>360 km-m/s </em>
The direction of the change is <em>up /\ </em>.
<span>To begin, the mouse walks from 5 to 12 cm, for a displacement of 7 cm. Next, it walks 8 cm in the opposite direction, for a total displacement of (7 + [-8]) or (-1) cm. This leaves the mouse on 4 cm, and then it walks from there to the 7cm location, for a displacement of 7-4 or +3 cm. Adding 3cm to -1cm gives a final displacement of +2cm.</span>
Answer:
I don't know this answer at all
Explanation:
I don't know about these problems
Answer:
Mass and height
Explanation:
Gravitational potential energy is energy an object possesses because of its position in a gravitational field. The most common use of gravitational potential energy is for an object near the surface of the Earth where the gravitational acceleration can be assumed to be constant at about 
Which is represented as;

stands for gravitational potantial energy,
m stands for mass of object,
g is the gravitational constant and
h is the height.
Here we see that mass of object and height is directly proportional to the gravitational potential energy.
That means increasing in mass and height will result in increasing gravitational potential energy.
Answer:
6.29 meters.
Explanation:
, where v is the speed of wave and f is the frequency of wave.
We are given that ,
The speed of sound is 346 m/s.
i..e v=346 m/s
A sound wave travels at a frequency of 55 H.
i..e f=55
the wavelength would be 6.29 meters.
This is based on another brainly answer
Link: brainly.com/question/12538018