1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga nikolaevna [1]
2 years ago
7

Derive the expression for the range of the ball as a function of its height. To do this you should use the following steps. In t

he first part of the motion, the ball undergoes vertical free fall until it hits the bounce plate. At this point, its final velocity in the y-direction becomes the initial velocity in the x-direction after hitting the plate. Now calculate the time it takes the ball to hit the ground after hitting the bounce plate. Lastly, find the distance that the ball will travel in the horizontal direction in this time. This is the range of the ball.
Physics
1 answer:
AVprozaik [17]2 years ago
4 0

Explanation:

Thanks for this....

its very helpful...

You might be interested in
A sharp edged orifice with a 60 mm diameter opening in the vertical side of a large tank discharges under a head of 6 m. If the
Ierofanga [76]

Answer:

The discharge rate is Q = 0.0192 \  m^3 /s

Explanation:

From the question we are told that

   The  diameter is  d =  60 \ mm   =  0.06 \ m

    The  head is  h  =  6 \ m

     The  coefficient of contraction is  Cc  =  0.68

     The  coefficient of  velocity is  Cv  =  0.92

The radius is mathematically evaluated as

         r =  \frac{d}{2}

substituting values

        r =  \frac{ 0.06 }{2}

        r =  0.03 \ m

The  area is mathematically represented as

      A =  \pi r^2

substituting values

      A =  3.142 *  (0.03)^2

      A = 0.00283 \ m^2

 The  discharge rate is mathematically represented as

        Q =  Cv *Cc  *  A  *  \sqrt{ 2 * g *  h}

substituting values

       Q = 0.68 *  0.92*   0.00283  *  \sqrt{ 2 * 9.8 *  6}

       Q = 0.0192 \  m^3 /s

6 0
2 years ago
Helpp me outtttttttt​
grandymaker [24]

Answer:

hope this helps you

Explanation:

bye bye

4 0
3 years ago
Assume that block A which has a mass of 30 kg is being pushed to the left with a force of 75 N along a frictionless surface. Wha
Veronika [31]

Answer:

The force of friction acting on block B is approximately 26.7N.  Note: this result does not match any value from your multiple choice list. Please see comment at the end of this answer.  

Explanation:

The acting force F=75N pushes block A into acceleration to the left. Through a kinetic friction force, block B also accelerates to the left, however, the maximum of the friction force (which is unknown) makes block B accelerate by 0.5 m/s^2 slower than the block A, hence appearing it to accelerate with 0.5 m/s^2 to the right relative to the block A.

To solve this problem, start with setting up the net force equations for both block A and B:

F_{Anet} = m_A\cdot a_A = F - F_{fr}\\F_{Bnet} = m_B\cdot a_B = F_{fr}

where forces acting to the left are positive and those acting to the right are negative. The friction force F_fr in the first equation  is due to A acting on B and in the second equation due to B acting on A. They are opposite in direction but have the same magnitude (Newton's third law). We also know that B accelerates 0.5 slower than A:

a_B = a_A-0.5 \frac{m}{s^2}

Now we can solve the system of 3 equations for a_A, a_B and finally for F_fr:

30kg\cdot a_A = 75N - F_{fr}\\24kg\cdot a_B = F_{fr}\\a_B= a_A-0.5 \frac{m}{s^2}\\\implies \\a_A=\frac{87}{54}\frac{m}{s^2},\,\,\,a_B=\frac{10}{9}\frac{m}{s^2}\\F_{fr} = 24kg \cdot \frac{10}{9}\frac{m}{s^2}=\frac{80}{3}kg\frac{m}{s^2}\approx 26.7N

The force of friction acting on block B is approximately 26.7N.

This answer has been verified by multiple people and is correct for the provided values in your question. I recommend double-checking the text of your question for any typos and letting us know in the comments section.

6 0
3 years ago
Read 2 more answers
What are the characteristics of the radiation emitted by a blackbody? According to Wien's Law, how many times hotter is an objec
jasenka [17]

Answer:

a) What are the characteristics of the radiation emitted by a blackbody?

The total emitted energy per unit of time and per unit of area depends in its temperature (Stefan-Boltzmann law).

The peak of emission for the spectrum will be displaced to shorter wavelengths as the temperature increase (Wien’s displacement law).

The spectral density energy is related with the temperature and the wavelength (Planck’s law).

b) According to Wien's Law, how many times hotter is an object whose blackbody emission spectrum peaks in the blue, at a wave length of 450 nm, than a object whose spectrum peaks in the red, at 700 nm?

The object with the blackbody emission spectrum peak in the blue is 1.55 times hotter than the object with the blackbody emission spectrum peak in the red.

Explanation:

A blackbody is an ideal body that absorbs all the thermal radiation that hits its surface, thus becoming an excellent emitter, as these bodies express themselves without light radiation, and therefore they look black.

The radiation of a blackbody depends only on its temperature, thus being independent of its shape, material and internal constitution.

If it is study the behavior of the total energy emitted from a blackbody at different temperatures, it can be seen how as the temperature increases the energy will also increase, this energy emitted by the blackbody is known as spectral radiance and the result of the behavior described previously is Stefan's law:

E = \sigma T^{4}  (1)

Where \sigma is the Stefan-Boltzmann constant and T is the temperature.

The Wien’s displacement law establish how the peak of emission of the spectrum will be displace to shorter wavelengths as the temperature increase (inversely proportional):

\lambda max = \frac{2.898x10^{-3} m. K}{T}   (2)

Planck’s law relate the temperature with the spectral energy density (shape) of the spectrum:

E_{\lambda} = {{8 \pi h c}\over{{\lambda}^5}{(e^{({hc}/{\lambda \kappa T})}-1)}}}  (3)

b) According to Wien's Law, how many times hotter is an object whose blackbody emission spectrum peaks in the blue, at a wavelength of 450 nm, than a object whose spectrum peaks in the red, at 700 nm?

It is need it to known the temperature of both objects before doing the comparison. That can be done by means of the Wien’s displacement law.

Equation (2) can be rewrite in terms of T:

T = \frac{2.898x10^{-3} m. K}{\lambda max}   (4)

Case for the object with the blackbody emission spectrum peak in the blue:

Before replacing all the values in equation (4), \lambda max (450 nm) will be express in meters:

450 nm . \frac{1m}{1x10^{9} nm}  ⇒ 4.5x10^{-7}m

T = \frac{2.898x10^{-3} m. K}{4.5x10^{-7}m}

T = 6440 K

Case for the object with the blackbody emission spectrum peak in the red:

Following the same approach above:

700 nm . \frac{1m}{1x10^{9} nm}  ⇒ 7x10^{-7}m

T = \frac{2.898x10^{-3} m. K}{7x10^{-7}m}

T = 4140 K

Comparison:

\frac{6440 K}{4140 K} = 1.55

The object with the blackbody emission spectrum peak in the blue is 1.55 times hotter than the object with the blackbody emission spectrum peak in the red.

4 0
3 years ago
What is it? Please help me.
Fed [463]
I believe that is a
4 0
2 years ago
Other questions:
  • Concerning the work done by a conservative force, which of the following statements, if any, are true? It can always be expresse
    13·1 answer
  • The kinetic energy of an object is equal to the?
    15·1 answer
  • Penelope sees that her brother Angelos is using water carelessly. She warns Angelos to be more careful because water is a renewa
    12·2 answers
  • Convert 525 pounds to kilograms using dimensional analysis setup
    11·1 answer
  • Penny has two dogs: Fluffy (left) and Butch (right).
    11·2 answers
  • A Ferris wheel car is moving in a circular path at a constant speed. Is the car accelerating?
    9·1 answer
  • What is the value of Vo in the
    5·1 answer
  • What is being despited in this picture
    15·1 answer
  • After you pick up a spare, your bowling ball rolls without slipping back toward the ball rack with a linear speed of vi=2.62 m/s
    8·1 answer
  • How long does it take for the Earth to make a complete revolution around the sun?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!