Answer:
<em>113.4 J</em>
Explanation:
<u>Elastic Potential Energy</u>
Is the energy stored in an elastic material like a spring of constant k, in which case the energy is proportional to the square of the change of length Δx and the constant k.

The spring has a natural length of 0.7 m and a spring constant of k=70 N/m. When the spring is stretched to a length of 2.5 m, the change of length is
Δx = 2.5 m - 0.7 m = 1.8 m
The energy stored in the spring is:

PE = 113.4 J
Answer:
(a) 7 m
(b) 1 m
Explanation:
Given:
The magnitude of displacement vector 'a' is 3 m
The magnitude of displacement vector 'b' is 4 m.
The vector 'c' is the vector sum of vectors 'a' and 'b'.
(a)
Now, when the angle between the vectors is 0°, it means that the vectors are in the same direction. When vectors are in the same direction, then their resultant magnitude is simply the sum of their magnitudes.
So, magnitude of 'c' when 'a' and 'b' are in same direction is given as:

Therefore, the magnitude of vector 'c' is 7 m when angle between 'a' and 'b' is 0°.
(b)
When the angle between the vectors is 180°, it means that the vectors are exactly in the opposite direction. When the vectors are in opposite direction, then their resultant magnitude is the subtraction of their magnitudes.
So, magnitude of 'c' when 'a' and 'b' are in opposite direction is:

Therefore, the magnitude of vector 'c' is 1 m when angle between 'a' and 'b' is 180°.
Answer:

Explanation:
a = Orbital radius = 
T = Orbital period = 23.21 hours
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
From Kepler's third law we get

From the given data the mass of Saturn is 
Answer:
Explanation:
I would have been an anti-federalist. They favored a weak central government because they related it to the British tyranny. Federalists believed in a strong central government, almost controlling. I would not have respected this type of government.