Answer:
u = 88.54 m/s
Explanation:
Given that,
A discus thrower achieves a high throw of 100 m.
Angle of projection is 30°
We need to find the initial speed of the discuss. It is a cse of projectile motion. The maximum height reached by the discus is given by :

u is the initial speed of the discus
So,

So, the initial speed of the discus is 88.54 m/s.
time to reach an angular velocity of 36.8 is 24.370 s.
<h3>
</h3><h3>What is angular acceleration?</h3>
The temporal rate at which angular velocity changes is referred to as angular acceleration. Naturally, there are two forms of angular acceleration, referred to as spin angular acceleration and orbital angular acceleration, just as there are two types of angular velocity, namely spin angular velocity and orbital angular velocity. As opposed to orbital angular acceleration, which is the angular acceleration of a point particle around a fixed origin, spin angular acceleration describes the angular acceleration of a rigid body about its centre of rotation.
w(t) = w(0) + α*t
also w(0) =0
=> time = 36.8/1.51= 24.370 s
to learn more about angular acceleration go to - brainly.com/question/21278452
#SPJ4
Earth is located in one of the spiral arms of the Milky Way (called the Orion Arm) which lies about two-thirds of the way out from the center of the Galaxy.
Answer:
Frequency doubles.
Explanation:
Frequency doubles because Wavelength and Frequency are inversely proportional. That means if one decreases the other one increases. So, if wavelength is half, frequency is the opposite, doubles.