Incomplete question as the angle between the force is not given I assumed angle of 55°.The complete question is here
Two forces, a vertical force of 22 lb and another of 16 lb, act on the same object. The angle between these forces is 55°. Find the magnitude and direction angle from the positive x-axis of the resultant force that acts on the object. (Round to one decimal places.)
Answer:
Resultant Force=33.8 lb
Angle=67.2°
Explanation:
Given data
Fa=22 lb
Fb=16 lb
Θ=55⁰
To find
(i) Resultant Force F
(ii)Angle α
Solution
First we need to represent the forces in vector form

Total Force

The Resultant Force is given as

For(ii) angle
We can find the angle bu using tanα=y/x
So

(a) The coil's self-inductance is 7.26 mH.
(b) The self-induced emf in the coil is 7.26 V
(c) The direction of the induced emf is from b to a.
<h3>Coil's self-inductance</h3>
L = N²μA/I
L = (600² x 4π x 10⁻⁷ x 6.9 x 10⁻⁴)/(0.043)
L = 7.26 x 10⁻³ H
L = 7.26 mH
<h3>Self-induced emf in the coil</h3>
emf = N(ΔBA)/t
where;
- B is magnetic field
- A is area
- N is number of turns
- t is time
B = μNI/L
B1 = (4π x 10⁻⁷ x 600 x 5)/0.043
B1 = 0.0876 T
B2 = (4π x 10⁻⁷ x 600 x 2)/0.043
B2 = 0.035 T
emf = NΔBA/t
emf = (600)(0.0876 - 0.035)(6.9 x 10⁻⁴) / (3 x 10⁻³)
emf = 7.26 V
The direction of the induced emf is always opposite to the direction of the applied current.
Thus, the direction of the induced emf is from b to a.
Learn more about induced emf here: brainly.com/question/13744192
#SPJ1
The answer is that it tells you how flexible your muscles are