Answer:
Thus the time taken is calculated as 387.69 years
Solution:
As per the question:
Half life of
= 28.5 yrs
Now,
To calculate the time, t in which the 99.99% of the release in the reactor:
By using the formula:

where
N = No. of nuclei left after time t
= No. of nuclei initially started with

(Since, 100% - 99.99% = 0.01%)
Thus

Taking log on both the sides:


t = 387.69 yrs
Answer:
300m/s
Explanation:
velocity = frequency(wavelength)
Since 10 waves pass a point each second, frequency is 10
therefore, speed = (10)(30 = 300m/s
The answer would be in the chart or graph A is 1 B is 2
Answer:
a) ΔV₁ = 21.9 V, b) U₀ = 99.2 10⁻¹² J, c) U_f = 249.9 10⁻¹² J, d) W = 150 10⁻¹² J
Explanation:
Let's find the capacitance of the capacitor
C =
C = 8.85 10⁻¹² (8.00 10⁻⁴) /2.70 10⁻³
C = 2.62 10⁻¹² F
for the initial data let's look for the accumulated charge on the plates
C =
Q₀ = C ΔV
Q₀ = 2.62 10⁻¹² 8.70
Q₀ = 22.8 10⁻¹² C
a) we look for the capacity for the new distance
C₁ = 8.85 10⁻¹² (8.00 10⁻⁴) /6⁴.80 10⁻³
C₁ = 1.04 10⁻¹² F
C₁ = Q₀ / ΔV₁
ΔV₁ = Q₀ / C₁
ΔV₁ = 22.8 10⁻¹² /1.04 10⁻¹²
ΔV₁ = 21.9 V
b) initial stored energy
U₀ =
U₀ = (22.8 10⁻¹²)²/(2 2.62 10⁻¹²)
U₀ = 99.2 10⁻¹² J
c) final stored energy
U_f = (22.8 10⁻¹²) ² /(2 1.04 10⁻⁻¹²)
U_f = 249.9 10⁻¹² J
d) the work of separating the plates
as energy is conserved work must be equal to energy change
W = U_f - U₀
W = (249.2 - 99.2) 10⁻¹²
W = 150 10⁻¹² J
note that as the energy increases the work must be supplied to the system
T=s/v=>t=1500/1,5=1000s
1,5km=1500m