Answer:
17.55 m/s²
Explanation:
Parameters given:
Mass of Krypton, M = 7.6 * 10^23 kg
Radius, R = 1.7 * 10^6 m
Gravitational constant, G = 6.6726 * 10^(-11) Nm²/kg²
Acceleration due to gravity of planet of mass M is given as:
g = GM/R²
Since the object is close to the surface of Krypton, we can say that the distance from the Centre of Krypton is the radius of the planet Krypton.
Therefore,
g = (6.6726 * 10^(-11) * 7.6 * 10^23)/(1.7 * 10^6)²
g = 17.55 m/s²
Answer:
The distance traveled by the balloon is 10.77 m
Explanation:
velocity of the ball,
= 2 m/s south
velocity of the air,
= 5 m/s west
To determine the distance the balloon will travel after 2 seconds, first determine the resultant velocity of the balloon.
| 2m/s
|
|
↓
5m/s ←------------------
the two velocities forms a right angled triangle and the resultant will be the hypotenuses side of the triangle.
R² = 5² + 2²
R² = 29
R = √29
R = 5.385 m/s
The distance traveled by the balloon is calculated as;
d = R x t
where;
t is time of the motion = 2 seconds
d = 5.385 x 2
d = 10.77 m
Therefore, the distance traveled by the balloon is 10.77 m.
Explanation:
700N right
to get the net force
you gotta let one direction be the negative ( the smaller force)
so the total force towards the left is 100N ( 60 + 40= 100)
which is smaller than the right force which is 800 N so you let 100 N be negative
so without even calculating , you can know that it will be moving towards the right because right force > left force
your add both forces ( remember 100 N is negative)
so 800N + ( - 100N)
= 700N
towards the right
hope this helps
this is just one method that helped me understand
please mark it brainliest
Answer:
A). 1.9 cm
Explanation:
m = Mass of brick = 12 kg
g = Acceleration due to gravity = 9.81 m/s²
r = Radius of hose
A = Area = 
F = Force = 
Let us assume that the pressure required to lift the brick would be atmospheric pressure

The radius of the hose should be 1.9 cm