1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jekas [21]
4 years ago
6

The speed of sound through oxygen at 0°C is 316 meters per second. The speed of sound through solid copper is 5,010 meters per s

econd. Which of the following could be the speed of sound through liquid mercury? A. 52 meters per second B. 1,450 meters per second C. 6,130 meters per second D. 228 meters per second
Physics
2 answers:
vivado [14]4 years ago
5 0

Answer:

1,450 meters per second

Explanation:

Ray Of Light [21]4 years ago
3 0

Answer:1,450 meters per second

Explanation:

You might be interested in
If a bar of copper is brought near a magnet, the copper bar will be
Alecsey [184]
It will be unaffected by the magnet because it has no magnetic field. If you were to maybe have electricity going through it is the only way it would have anything to do with the magnet. 
  <span />
5 0
3 years ago
Read 2 more answers
A loaded 375 kg toboggan is traveling on smooth horizontal snow at 4.50 m/s when it suddenly comes to a rough region. The region
zmey [24]

Answer:

a) The average friction force exerted on the toboggan is 653.125 newtons, b) The rough region reduced the kinetic energy of the toboggan in 92.889 %, c) The speed of the toboggan is reduced in 73.333 %.

Explanation:

a) Given the existence of non-conservative forces (friction between toboggan and ground), the motion must be modelled by means of the Principle of Energy Conservation and the Work-Energy Theorem, since toboggan decrease its speed (associated with  due to the action of friction. Changes in gravitational potential energy can be neglected due to the inclination of the ground. Then:

K_{1} = K_{2} + W_{f}

Where:

K_{1}, K_{2} are the initial and final translational kinetic energies of the tobbogan, measured in joules.

W_{f} - Dissipated work due to friction, measured in joules.

By applying definitions of translation kinetic energy and work, the expression described above is now expanded and simplified:

f\cdot \Delta s = \frac{1}{2}\cdot m \cdot (v_{1}^{2}-v_{2}^{2})

Where:

f - Friction force, measured in newtons.

\Delta s - Distance travelled by the toboggan in the rough region, measured in meters.

m - Mass of the toboggan, measured in kilograms.

v_{1}, v_{2} - Initial and final speed of the toboggan, measured in meters per second.

The friction force is cleared:

f = \frac{m\cdot (v_{1}^{2}-v_{2}^{2})}{2\cdot \Delta s}

If m = 375\,kg, v_{1} = 4.50\,\frac{m}{s}, v_{2} = 1.20\,\frac{m}{s} and \Delta s = 5.40 \,m, then:

f = \frac{(375\,kg)\cdot \left[\left(4.50\,\frac{m}{s} \right)^{2}-\left(1.20\,\frac{m}{s}\right)^{2}\right]}{2\cdot (5.40\,m)}

f = 653.125\,N

The average friction force exerted on the toboggan is 653.125 newtons.

b) The percentage lost by the kinetic energy of the tobbogan due to friction is given by the following expression, which is expanded and simplified afterwards:

\% K_{loss} = \frac{K_{1}-K_{2}}{K_{1}}\times 100\,\%

\% K_{loss} = \left(1-\frac{K_{2}}{K_{1}} \right)\times 100\,\%

\% K_{loss} = \left(1-\frac{\frac{1}{2}\cdot m \cdot v_{2}^{2}}{\frac{1}{2}\cdot m \cdot v_{1}^{2}} \right)\times 100\,\%

\% K_{loss} = \left(1-\frac{v_{2}^{2}}{v_{1}^{2}} \right)\times 100\,\%

\%K_{loss} = \left[1-\left(\frac{v_{2}}{v_{1}}\right)^{2} \right]\times 100\,\%

If v_{1} = 4.50\,\frac{m}{s} and v_{2} = 1.20\,\frac{m}{s}, then:

\%K_{loss} = \left[1-\left(\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} }\right)^{2} \right]\times 100\,\%

\%K_{loss} = 92.889\,\%

The rough region reduced the kinetic energy of the toboggan in 92.889 %.

c) The percentage lost by the speed of the tobbogan due to friction is given by the following expression:

\% v_{loss} = \frac{v_{1}-v_{2}}{v_{1}}\times 100\,\%

\% v_{loss} = \left(1-\frac{v_{2}}{v_{1}} \right)\times 100\,\%

If v_{1} = 4.50\,\frac{m}{s} and v_{2} = 1.20\,\frac{m}{s}, then:

\% v_{loss} = \left(1-\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} } \right)\times 100\,\%

\%v_{loss} = 73.333\,\%

The speed of the toboggan is reduced in 73.333 %.

5 0
3 years ago
A person is sitting at the very back of a canoe of length L, when the front just bumps into the dock. show answer No Attempt 50%
Pavel [41]

The distance of the canoeist from the dock is equal to length of the canoe, L.

<h3>Conservation of linear momentum</h3>

The principle of conservation of linear momentum states that the total momentum of an isolated system is always conserved.

v(m₁ + m₂) = m₁v₁ + m₂v₂

where;

v is the velocity of the canoeist and the canoe when they are together

  • u₁ is the velocity of the canoe
  • u₂ velocity of the canoeist
  • m₁ mass of the canoe
  • m₂ mass of the canoeist

<h3>Distance traveled by the canoeist</h3>

The distance traveled by the canoeist from the back of the canoe to the front of the canoe is equal to the length of the canoe.

Thus, the distance of the canoeist from the dock is equal to length of the canoe, L.

Learn more about conservation of linear momentum here: brainly.com/question/7538238

6 0
2 years ago
A plane electromagnetic wave travels northward. At one instant, its electric field has a magnitude of 9.6 V/m and points eastwar
lara31 [8.8K]

Answer:

The values is  B  = 3.2 *10^{-8} \  T

The  direction is out of the plane

Explanation:

From the question we are told that

  The  magnitude of the electric field is  E  =  9.6 \  V/m

 

The  magnitude of the magnetic field is mathematically represented as

       B  = \frac{E}{c}

where c is the speed of light with value

      B  = \frac{ 9.6}{3.0 *10^{8}}

     B  = 3.2 *10^{-8} \  T

Given that the direction off the electromagnetic wave( c ) is  northward(y-plane ) and  the electric field(E) is eastward(x-plane ) then the magnetic field will be acting in the out of the page  (z-plane  )

     

3 0
3 years ago
The volume of an ideal gas changes from 0.40 to 0.55 m3 although its pressure remains constant at 50,000 Pa. What work is done o
Rama09 [41]

Answer:

w= p∆v 50000 ( 0.55-0.40) and calculate and you get it

7 0
3 years ago
Other questions:
  • Describe the organization of our solar system
    14·2 answers
  • To get an accurate data reading, scientists must be sure to
    15·1 answer
  • How many nanoseconds does it take light to travel 3.50 ft in vacuum?
    14·1 answer
  • Look at the v-t graph a remote-controlled toy car below. At t = 0.0 s, the car is located at +10.0cm. What is the magnitude of t
    6·1 answer
  • What waves travel through a medium? Transverse, longitudinal, surface, electromagnetic, and mechanical are the choices
    15·1 answer
  • ___ acceleration occurs when an object speeds up
    14·2 answers
  • Tectonic plates move ________. A. about a kilometer per year B. at different speeds C. about one yard per year D. at the same sp
    11·1 answer
  • I NEED HELP ASAP! Compare the spectrum of the unknown gas collected at the bulb company
    10·1 answer
  • A block rests on a 15.0° incline. If the block weighs 70. N, what is the normal force on the block?
    12·1 answer
  • 21. Explain why a passenger who is not wearing a safety belt will likely hit the windshield in a head-on collision. please answe
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!