This can be solved using momentum balance, since momentum is conserved, the momentum at point 1 is equal to the momentum of point 2. momentum = mass x velocity
m1v1 = m2v2
(0.03kg x 900 m/s ) = 320(v2)
v2 = 27 / 320
v2 = 0.084 m/s is the speed of the astronaut
The elastic potential energy of a spring is given by

where k is the spring's constant and x is the displacement with respect to the relaxed position of the spring.
The work done by the spring is the negative of the potential energy difference between the final and initial condition of the spring:

In our problem, initially the spring is uncompressed, so

. Therefore, the work done by the spring when it is compressed until

is

And this value is actually negative, because the box is responsible for the spring's compression, so the work is done by the box.
Answer:
using a formula
average velocity=total displacement/total time
average velocity=120/1minute40sec
1minute=60sec
60sec+40sec=120sec
average velocity=120m/120sec
average velocity=1m/sec
Answer:
(a) 42.28°
(b) 37.08°
Explanation:
From the principle of refraction of light, when light wave travels from one medium to another medium, we have:
= sinθ
/sinθ
In the given problem, we are given the refractive indices of light which are parallel and perpendicular to the axis of the optical lens as 1.4864 and 1.6584 respectively.
For critical angle θ
= θ
, θ
= 90°; 
(a) 
= sinθ
/sin90°
0.6728 = sinθ![_{c}θ[tex]_{c} = sin^(-1) 0.6728 = 42.28°(b) [tex]n_{a} = 1.6584](https://tex.z-dn.net/?f=_%7Bc%7D%3C%2Fp%3E%3Cp%3E%CE%B8%5Btex%5D_%7Bc%7D%20%3D%20sin%5E%28-1%29%200.6728%20%3D%2042.28%C2%B0%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%28b%29%20%5Btex%5Dn_%7Ba%7D%20%3D%201.6584)
= sinθ
/sin90°
0.60299 = sinθ[tex]_{c}
θ[tex]_{c} = sin^(-1) 0.60299 = 37.08°
Answer:
Potential energy. Releasing it, the potential energy would convert into motion, kinetic energy.
Potential energy is when an object has some sort of potential eg. for motion such as in this example.