Answer:
not work
Explanation:
in a series circuit, everything meaning the electrons are flowing on one path, therefore, it wouldn continue to work.
Answer:
A) B = 5.4 10⁻⁵ T, B) the positive side of the bar is to the West
Explanation:
A) For this exercise we must use the expression of Faraday's law for a moving body
fem = 
fem =
- d (B l y) / dt = - B lv
B = 
we calculate
B = - 7.9 10⁻⁴ /(0.73 20)
B = 5.4 10⁻⁵ T
B) to determine which side of the bar is positive, we must use the right hand rule
the thumb points in the direction of the rod movement to the south, the magnetic field points in the horizontal direction and the rod is in the east-west direction.
Therefore the force points in the direction perpendicular to the velocity and the magnetic field is in the east direction; therefore the positive side of the bar is to the West
Answer:
Approximately
.
Assumption: the ball dropped with no initial velocity, and that the air resistance on this ball is negligible.
Explanation:
Assume the air resistance on the ball is negligible. Because of gravity, the ball should accelerate downwards at a constant
near the surface of the earth.
For an object that is accelerating constantly,
,
where
is the initial velocity of the object,
is the final velocity of the object.
is its acceleration, and
is its displacement.
In this case,
is the same as the change in the ball's height:
. By assumption, this ball was dropped with no initial velocity. As a result,
. Since the ball is accelerating due to gravity,
.
.
In this case,
would be the velocity of the ball just before it hits the ground. Solve for
.
.
It depends on the graphics, color, structure all that stuff for me to believe if the image is real or virtual
Hope I helped you