Answer: Between <u>2</u> and <u>2.5</u> seconds
How am I getting those values? Those values are selected from the 't' column on the left side of the table. These are time values in seconds. Note how t = 2 corresponds to h = 0.4; while t = 2.5 corresponds to h = -10.6
The change in sign for the height, from positive to negative, means that the height h must be zero at some point between t = 2 seconds and t = 2.5 seconds. We don't know where exactly, but we know that h = 0 at least once in this interval. This is because the height is a continuous function. There are no jumps or gaps in the height (the object can't teleport or anything)
Well to convert feet into km you have to know that 1 feet = 0.0003048 km
knowing that you multiply the km by 60 which gives you..... 0.018288 km
You have the 175 on the wrong line, the problem says 175 feet from the base, this is the bottom of the tree.
See attached picture for solution:
If
is the cumulative distribution function for
, then

Then the probability density function for
is
:

The
th moment of
is
![E[Y^n]=\displaystyle\int_{-\infty}^\infty y^nf_Y(y)\,\mathrm dy=\frac1{\sqrt{2\pi}}\int_0^\infty y^{n-1}e^{-\frac12(\ln y)^2}\,\mathrm dy](https://tex.z-dn.net/?f=E%5BY%5En%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20y%5Enf_Y%28y%29%5C%2C%5Cmathrm%20dy%3D%5Cfrac1%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_0%5E%5Cinfty%20y%5E%7Bn-1%7De%5E%7B-%5Cfrac12%28%5Cln%20y%29%5E2%7D%5C%2C%5Cmathrm%20dy)
Let
, so that
and
:
![E[Y^n]=\displaystyle\frac1{\sqrt{2\pi}}\int_{-\infty}^\infty e^{nu}e^{-\frac12u^2}\,\mathrm du=\frac1{\sqrt{2\pi}}\int_{-\infty}^\infty e^{nu-\frac12u^2}\,\mathrm du](https://tex.z-dn.net/?f=E%5BY%5En%5D%3D%5Cdisplaystyle%5Cfrac1%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7Bnu%7De%5E%7B-%5Cfrac12u%5E2%7D%5C%2C%5Cmathrm%20du%3D%5Cfrac1%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7Bnu-%5Cfrac12u%5E2%7D%5C%2C%5Cmathrm%20du)
Complete the square in the exponent:

![E[Y^n]=\displaystyle\frac1{\sqrt{2\pi}}\int_{-\infty}^\infty e^{\frac12(n^2-(u-n)^2)}\,\mathrm du=\frac{e^{\frac12n^2}}{\sqrt{2\pi}}\int_{-\infty}^\infty e^{-\frac12(u-n)^2}\,\mathrm du](https://tex.z-dn.net/?f=E%5BY%5En%5D%3D%5Cdisplaystyle%5Cfrac1%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B%5Cfrac12%28n%5E2-%28u-n%29%5E2%29%7D%5C%2C%5Cmathrm%20du%3D%5Cfrac%7Be%5E%7B%5Cfrac12n%5E2%7D%7D%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B-%5Cfrac12%28u-n%29%5E2%7D%5C%2C%5Cmathrm%20du)
But
is exactly the PDF of a normal distribution with mean
and variance 1; in other words, the 0th moment of a random variable
:
![E[U^0]=\displaystyle\frac1{\sqrt{2\pi}}\int_{-\infty}^\infty e^{-\frac12(u-n)^2}\,\mathrm du=1](https://tex.z-dn.net/?f=E%5BU%5E0%5D%3D%5Cdisplaystyle%5Cfrac1%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B-%5Cfrac12%28u-n%29%5E2%7D%5C%2C%5Cmathrm%20du%3D1)
so we end up with
![E[Y^n]=e^{\frac12n^2}](https://tex.z-dn.net/?f=E%5BY%5En%5D%3De%5E%7B%5Cfrac12n%5E2%7D)